{"title":"Control Communication in SDN-based Dynamic Multi-hop Wireless Infrastructure-less Networks","authors":"Ayush Dusia, V. Mishra, A. Sethi","doi":"10.1109/ANTS.2018.8710097","DOIUrl":null,"url":null,"abstract":"Nodes in a dynamic wireless network are expected to autonomously self-organize and configure routes for communicating amongst themselves. Such networks have applications in several scenarios, including military, disaster relief, and search and rescue operations. Designing a solution for such networks is challenging because of their unique characteristics. Traditionally, decentralized solutions have been sought-after. In the past few years, Software-Defined Networking (SDN) has emerged as a promising approach for designing effective solutions for different types of networks. In this paper, we present an SDN-based architecture and a control communication protocol for dynamic multi-hop wireless infrastructure-less networks. In particular, the solution is designed for networks with 1) node mobility and unreliable connectivity, 2) unstructured network topology, 3) limited bandwidth and high interference due to multi-hop communication in a shared channel, 4) no out-of-band communication channel, and 5) no location-tracking services for learning the position of mobile nodes. We evaluate our architecture and control communication protocol in NS-3 and compare the results with two conventional solutions - OLSR and DSDV. The results demonstrate up to 40% reduction in the routing overhead while achieving the same or better throughput than the conventional solutions for networks of size up to 50 nodes.","PeriodicalId":273443,"journal":{"name":"2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2018.8710097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Nodes in a dynamic wireless network are expected to autonomously self-organize and configure routes for communicating amongst themselves. Such networks have applications in several scenarios, including military, disaster relief, and search and rescue operations. Designing a solution for such networks is challenging because of their unique characteristics. Traditionally, decentralized solutions have been sought-after. In the past few years, Software-Defined Networking (SDN) has emerged as a promising approach for designing effective solutions for different types of networks. In this paper, we present an SDN-based architecture and a control communication protocol for dynamic multi-hop wireless infrastructure-less networks. In particular, the solution is designed for networks with 1) node mobility and unreliable connectivity, 2) unstructured network topology, 3) limited bandwidth and high interference due to multi-hop communication in a shared channel, 4) no out-of-band communication channel, and 5) no location-tracking services for learning the position of mobile nodes. We evaluate our architecture and control communication protocol in NS-3 and compare the results with two conventional solutions - OLSR and DSDV. The results demonstrate up to 40% reduction in the routing overhead while achieving the same or better throughput than the conventional solutions for networks of size up to 50 nodes.