Linear-Time Algorithm for Long LCF with k Mismatches

P. Charalampopoulos, M. Crochemore, C. Iliopoulos, T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, Tomasz Waleń
{"title":"Linear-Time Algorithm for Long LCF with k Mismatches","authors":"P. Charalampopoulos, M. Crochemore, C. Iliopoulos, T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, Tomasz Waleń","doi":"10.4230/LIPIcs.CPM.2018.23","DOIUrl":null,"url":null,"abstract":"In the Longest Common Factor with $k$ Mismatches (LCF$_k$) problem, we are given two strings $X$ and $Y$ of total length $n$, and we are asked to find a pair of maximal-length factors, one of $X$ and the other of $Y$, such that their Hamming distance is at most $k$. Thankachan et al. show that this problem can be solved in $\\mathcal{O}(n \\log^k n)$ time and $\\mathcal{O}(n)$ space for constant $k$. We consider the LCF$_k$($\\ell$) problem in which we assume that the sought factors have length at least $\\ell$, and the LCF$_k$($\\ell$) problem for $\\ell=\\Omega(\\log^{2k+2} n)$, which we call the Long LCF$_k$ problem. We use difference covers to reduce the Long LCF$_k$ problem to a task involving $m=\\mathcal{O}(n/\\log^{k+1}n)$ synchronized factors. The latter can be solved in $\\mathcal{O}(m \\log^{k+1}m)$ time, which results in a linear-time algorithm for Long LCF$_k$. In general, our solution to LCF$_k$($\\ell$) for arbitrary $\\ell$ takes $\\mathcal{O}(n + n \\log^{k+1} n/\\sqrt{\\ell})$ time.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2018.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In the Longest Common Factor with $k$ Mismatches (LCF$_k$) problem, we are given two strings $X$ and $Y$ of total length $n$, and we are asked to find a pair of maximal-length factors, one of $X$ and the other of $Y$, such that their Hamming distance is at most $k$. Thankachan et al. show that this problem can be solved in $\mathcal{O}(n \log^k n)$ time and $\mathcal{O}(n)$ space for constant $k$. We consider the LCF$_k$($\ell$) problem in which we assume that the sought factors have length at least $\ell$, and the LCF$_k$($\ell$) problem for $\ell=\Omega(\log^{2k+2} n)$, which we call the Long LCF$_k$ problem. We use difference covers to reduce the Long LCF$_k$ problem to a task involving $m=\mathcal{O}(n/\log^{k+1}n)$ synchronized factors. The latter can be solved in $\mathcal{O}(m \log^{k+1}m)$ time, which results in a linear-time algorithm for Long LCF$_k$. In general, our solution to LCF$_k$($\ell$) for arbitrary $\ell$ takes $\mathcal{O}(n + n \log^{k+1} n/\sqrt{\ell})$ time.
有k个不匹配的长LCF的线性时间算法
在具有$k$错配的最长公共因子(LCF $_k$)问题中,我们给定两个字符串$X$和$Y$,总长度为$n$,我们被要求找到一对最大长度因子,一个为$X$,另一个为$Y$,使得它们的汉明距离不超过$k$。Thankachan等人表明,对于常数$k$,这个问题可以在$\mathcal{O}(n \log^k n)$时间和$\mathcal{O}(n)$空间中解决。我们考虑LCF $_k$ ($\ell$)问题,其中我们假设所寻找的因子长度至少为$\ell$,以及$\ell=\Omega(\log^{2k+2} n)$的LCF $_k$ ($\ell$)问题,我们称之为长LCF $_k$问题。我们使用差异覆盖将Long LCF $_k$问题简化为涉及$m=\mathcal{O}(n/\log^{k+1}n)$同步因素的任务。后者可以在$\mathcal{O}(m \log^{k+1}m)$时间内求解,从而得到长LCF的线性时间算法$_k$。一般来说,我们对任意$\ell$的LCF $_k$ ($\ell$)的解决方案需要$\mathcal{O}(n + n \log^{k+1} n/\sqrt{\ell})$时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信