Rational quadratic Bezier triangles on quadrics

G. Albrecht
{"title":"Rational quadratic Bezier triangles on quadrics","authors":"G. Albrecht","doi":"10.1109/CGI.1998.694247","DOIUrl":null,"url":null,"abstract":"First, different ways of solving the problem, if a given rational triangular Bezier patch of degree 2 lies on a quadric surface, are presented. Although these approaches are theoretically equivalent, their difference from the practical point of view is illustrated by analysing and comparing the numerical condition of the respective problems. Second, given a rational triangular Bezier patch of degree 2 in standard form with five fixed control points, geometrical conditions on the locus of the sixth control point are derived and the remaining inner weights are determined. The locus of this remaining control point results to be part of a quadric surface. The obtained results are illustrated for a representative example.","PeriodicalId":434370,"journal":{"name":"Proceedings. Computer Graphics International (Cat. No.98EX149)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Computer Graphics International (Cat. No.98EX149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1998.694247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

First, different ways of solving the problem, if a given rational triangular Bezier patch of degree 2 lies on a quadric surface, are presented. Although these approaches are theoretically equivalent, their difference from the practical point of view is illustrated by analysing and comparing the numerical condition of the respective problems. Second, given a rational triangular Bezier patch of degree 2 in standard form with five fixed control points, geometrical conditions on the locus of the sixth control point are derived and the remaining inner weights are determined. The locus of this remaining control point results to be part of a quadric surface. The obtained results are illustrated for a representative example.
二次曲面上的有理二次贝塞尔三角形
首先,给出了在二次曲面上给定2次有理三角形贝塞尔斑块的不同解法。虽然这些方法在理论上是等效的,但通过分析和比较各自问题的数值条件,说明了它们在实际应用中的不同之处。其次,给定具有5个固定控制点的标准形式2次有理三角形Bezier patch,推导了第六个控制点轨迹的几何条件,并确定了剩余的内权重。这个剩余控制点的轨迹结果是二次曲面的一部分。最后以一个典型实例说明了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信