FEEP: Functional ECO Synthesis with Efficient Patch Minimization

Yaotian Liu, Yuhang Zhang, Qing Zhang, Rui Chen, Yongfu Li
{"title":"FEEP: Functional ECO Synthesis with Efficient Patch Minimization","authors":"Yaotian Liu, Yuhang Zhang, Qing Zhang, Rui Chen, Yongfu Li","doi":"10.1109/AICAS57966.2023.10168557","DOIUrl":null,"url":null,"abstract":"Functional engineering change order (ECO) has been an essential process in modern complex integrated circuit design. Finding a high-quality circuit patch efficiently has long been a challenge. This paper proposes FEEP, an automatic and efficient synthesis-based functional ECO method. Structural pruning and stratified searching techniques are proposed to minimize search space without extra logical equivalence checks. Moreover, we propose a machine-learning-based two-stage patch size predictor that assists in predicting patch quality. Experimental results show that our algorithm can efficiently search and produce high-quality patches under various test cases.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional engineering change order (ECO) has been an essential process in modern complex integrated circuit design. Finding a high-quality circuit patch efficiently has long been a challenge. This paper proposes FEEP, an automatic and efficient synthesis-based functional ECO method. Structural pruning and stratified searching techniques are proposed to minimize search space without extra logical equivalence checks. Moreover, we propose a machine-learning-based two-stage patch size predictor that assists in predicting patch quality. Experimental results show that our algorithm can efficiently search and produce high-quality patches under various test cases.
FEEP:高效贴片最小化的功能性生态合成
功能工程变更顺序(ECO)是现代复杂集成电路设计中的一个重要过程。长期以来,高效地找到高质量的电路贴片一直是一个挑战。本文提出了一种自动、高效的基于合成的功能化ECO方法——FEEP。提出了结构修剪和分层搜索技术,以减少搜索空间,而不需要额外的逻辑等价检查。此外,我们提出了一个基于机器学习的两阶段补丁大小预测器,以帮助预测补丁质量。实验结果表明,该算法在各种测试用例下都能有效地搜索并生成高质量的补丁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信