Global exponential stability in neural network with delays

Z. Dongming, Cao Jinde
{"title":"Global exponential stability in neural network with delays","authors":"Z. Dongming, Cao Jinde","doi":"10.1109/ICOSP.1998.770863","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of global exponential stability of the equilibrium of a class of neural networks with delays, by using the method of variation of constants and combining it with the method of inequality analysis. Sufficient conditions for global exponential stability of neural networks with delays are obtained, for which we do not require symmetry of the connection matrix and nonlinear properties for neural units to be continuously differentiable or strictly monotonically increasing. These conditions can be used to design globally stable neural networks.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the problem of global exponential stability of the equilibrium of a class of neural networks with delays, by using the method of variation of constants and combining it with the method of inequality analysis. Sufficient conditions for global exponential stability of neural networks with delays are obtained, for which we do not require symmetry of the connection matrix and nonlinear properties for neural units to be continuously differentiable or strictly monotonically increasing. These conditions can be used to design globally stable neural networks.
时滞神经网络的全局指数稳定性
本文利用常数变分法与不等式分析方法相结合,研究了一类时滞神经网络平衡点的全局指数稳定性问题。给出了具有时滞的神经网络全局指数稳定的充分条件,该条件下神经网络单元不要求连接矩阵的对称性和非线性性质连续可微或严格单调递增。这些条件可用于设计全局稳定的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信