Synthesis of Non-separable Sparse Planar Array via Compressed Sensing

Xiaowen Zhao, Qingshan Yang, Yunhua Zhang
{"title":"Synthesis of Non-separable Sparse Planar Array via Compressed Sensing","authors":"Xiaowen Zhao, Qingshan Yang, Yunhua Zhang","doi":"10.1109/COMPEM.2019.8779137","DOIUrl":null,"url":null,"abstract":"In this paper, an effective method is proposed for synthesizing non-separable sparse planar array to match the desired radiation pattern using as few elements as possible. The original synthesis is formulated as a sparse signal recovery convex problem based on Compressed Sensing (CS) theory by sampling on the reference 3-D pattern along with discretizing the 2-D aperture. In this way, the proposed method has the capability of achieving a complete optimization on the number of elements, the element weights as well as the element positions. Numerical experiment for matching non-separable Chebyshev pattern will demonstrate the effectiveness and sparseness of the proposed method.","PeriodicalId":342849,"journal":{"name":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2019.8779137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an effective method is proposed for synthesizing non-separable sparse planar array to match the desired radiation pattern using as few elements as possible. The original synthesis is formulated as a sparse signal recovery convex problem based on Compressed Sensing (CS) theory by sampling on the reference 3-D pattern along with discretizing the 2-D aperture. In this way, the proposed method has the capability of achieving a complete optimization on the number of elements, the element weights as well as the element positions. Numerical experiment for matching non-separable Chebyshev pattern will demonstrate the effectiveness and sparseness of the proposed method.
基于压缩感知的不可分离稀疏平面阵列合成
本文提出了一种利用尽可能少的单元合成不可分离稀疏平面阵列以匹配期望辐射方向图的有效方法。原始合成是基于压缩感知(CS)理论的稀疏信号恢复凸问题,通过对参考三维图形进行采样,同时对二维孔径进行离散。这样,所提出的方法能够在元素数量、元素权重以及元素位置上实现完全的优化。对不可分切比雪夫模式匹配的数值实验证明了该方法的有效性和稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信