Phrase-Based Semantic Textual Similarity for Linking Researchers

J. Reyes-Ortíz, Maricela Claudia Bravo, Omar E. Padilla
{"title":"Phrase-Based Semantic Textual Similarity for Linking Researchers","authors":"J. Reyes-Ortíz, Maricela Claudia Bravo, Omar E. Padilla","doi":"10.1109/DEXA.2015.54","DOIUrl":null,"url":null,"abstract":"Researchers need to establish networks with colleagues that work similar topics, frequently, they are looking similar works by exploring free text in scientific publications in order to update them with the recent state of the art. They read the abstracts and decide whether or not it is a related and relevant work. Therefore, this paper presents an approach for linking researchers based on measuring the similarity between the abstracts of their scientific publications in English. Our approach discovers ontological relationships between free text scientific publications using statistical and semantic similarity measures. An evaluation of a gold standard data set is presented, it has shown an average of 0.6399 for Pearson product-moment correlation coefficient.","PeriodicalId":239815,"journal":{"name":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2015.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers need to establish networks with colleagues that work similar topics, frequently, they are looking similar works by exploring free text in scientific publications in order to update them with the recent state of the art. They read the abstracts and decide whether or not it is a related and relevant work. Therefore, this paper presents an approach for linking researchers based on measuring the similarity between the abstracts of their scientific publications in English. Our approach discovers ontological relationships between free text scientific publications using statistical and semantic similarity measures. An evaluation of a gold standard data set is presented, it has shown an average of 0.6399 for Pearson product-moment correlation coefficient.
基于短语的语义文本相似度链接研究
研究人员需要与研究类似课题的同事建立联系,经常,他们通过探索科学出版物中的免费文本来寻找类似的作品,以便用最新的艺术状态来更新它们。他们阅读摘要,并决定它是否是一个相关的和相关的工作。因此,本文提出了一种基于测量英语科学出版物摘要之间相似性的联系研究人员的方法。我们的方法使用统计和语义相似性度量来发现自由文本科学出版物之间的本体论关系。对一个金标准数据集进行了评估,结果显示Pearson积矩相关系数的平均值为0.6399。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信