Benchmarking Nonlinear Model Predictive Control with Input Parameterizations

F. Fusco, Guillaume Allibert, Olivier Kermorgant, P. Martinet
{"title":"Benchmarking Nonlinear Model Predictive Control with Input Parameterizations","authors":"F. Fusco, Guillaume Allibert, Olivier Kermorgant, P. Martinet","doi":"10.1109/MMAR55195.2022.9874297","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) while being a very effective control technique can become computationally demanding when a large prediction horizon is selected. To make the problem more tractable, one technique that has been proposed in the literature makes use of control input parameterizations to decrease the numerical complexity of nonlinear MPC problems without necessarily affecting the performances significantly. In this paper, we review the use of parameterizations and propose a simple Sequential Quadratic Programming algorithm for nonlinear MPC. We benchmark the performances of the solver in simulation and compare them with state-of-the-art solvers. Results show that parameter-izations allow to attain good performances with (significantly) lower computation times.","PeriodicalId":169528,"journal":{"name":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR55195.2022.9874297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model Predictive Control (MPC) while being a very effective control technique can become computationally demanding when a large prediction horizon is selected. To make the problem more tractable, one technique that has been proposed in the literature makes use of control input parameterizations to decrease the numerical complexity of nonlinear MPC problems without necessarily affecting the performances significantly. In this paper, we review the use of parameterizations and propose a simple Sequential Quadratic Programming algorithm for nonlinear MPC. We benchmark the performances of the solver in simulation and compare them with state-of-the-art solvers. Results show that parameter-izations allow to attain good performances with (significantly) lower computation times.
基于输入参数化的非线性模型预测控制基准
模型预测控制(MPC)虽然是一种非常有效的控制技术,但当选择较大的预测范围时,计算量会变得非常大。为了使问题更易于处理,文献中提出的一种技术利用控制输入参数化来降低非线性MPC问题的数值复杂性,而不必显著影响性能。在本文中,我们回顾了参数化的使用,并提出了一个简单的非线性MPC的顺序二次规划算法。我们在模拟中对求解器的性能进行了基准测试,并将其与最先进的求解器进行了比较。结果表明,参数化允许以(显著)较低的计算时间获得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信