Synchronization-Inspired Co-Clustering and Its Application to Gene Expression Data

Junming Shao, Chongming Gao, Weishan Zeng, Jingkuan Song, Qinli Yang
{"title":"Synchronization-Inspired Co-Clustering and Its Application to Gene Expression Data","authors":"Junming Shao, Chongming Gao, Weishan Zeng, Jingkuan Song, Qinli Yang","doi":"10.1109/ICDM.2017.141","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new synchronization-inspired co-clustering algorithm by dynamic simulation, called CoSync, which aims to discover biologically relevant subgroups embedding in a given gene expression data matrix. The basic idea is to view a gene expression data matrix as a dynamical system, and the weighted two-sided interactions are imposed on each element of the matrix from both aspects of genes and conditions, resulting in the values of all element in a co-cluster synchronizing together. Experiments show that our algorithm allows uncovering high-quality co-clusterings embedded in gene expression data sets and has its superiority over many state-of-the-art algorithms.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we propose a new synchronization-inspired co-clustering algorithm by dynamic simulation, called CoSync, which aims to discover biologically relevant subgroups embedding in a given gene expression data matrix. The basic idea is to view a gene expression data matrix as a dynamical system, and the weighted two-sided interactions are imposed on each element of the matrix from both aspects of genes and conditions, resulting in the values of all element in a co-cluster synchronizing together. Experiments show that our algorithm allows uncovering high-quality co-clusterings embedded in gene expression data sets and has its superiority over many state-of-the-art algorithms.
同步启发的共聚类及其在基因表达数据中的应用
在本文中,我们提出了一种新的动态模拟同步启发的共聚类算法,称为CoSync,旨在发现嵌入在给定基因表达数据矩阵中的生物学相关亚群。其基本思想是将基因表达数据矩阵视为一个动态系统,并从基因和条件两个方面对矩阵的每个元素施加加权的双边相互作用,从而使共簇中所有元素的值同步在一起。实验表明,我们的算法可以发现嵌入在基因表达数据集中的高质量共聚类,并且比许多最先进的算法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信