Field-Scale Production Optimization with Intelligent Wells

Osho Ilamah, Ross Waterhouse
{"title":"Field-Scale Production Optimization with Intelligent Wells","authors":"Osho Ilamah, Ross Waterhouse","doi":"10.2118/190827-MS","DOIUrl":null,"url":null,"abstract":"\n Intelligent wells with inflow control valves enable flexible management of multiple reservoir intervals. In this paper, we describe model based optimization of inflow control valve settings for a producing North Sea field. A two step, non-invasive, iterative pattern search optimization algorithm is applied. The first step provides global search of the feasible region using a discrete genetic algorithm whereas the second step provides local search around the incumbent solution. To account for reservoir uncertainties, optimization is performed on a diverse set of history matched reservoir model realizations, within an automated framework. The results show a significant improvement in predicted reservoir production performance over the remaining life of the field.","PeriodicalId":178883,"journal":{"name":"Day 4 Thu, June 14, 2018","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 14, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/190827-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Intelligent wells with inflow control valves enable flexible management of multiple reservoir intervals. In this paper, we describe model based optimization of inflow control valve settings for a producing North Sea field. A two step, non-invasive, iterative pattern search optimization algorithm is applied. The first step provides global search of the feasible region using a discrete genetic algorithm whereas the second step provides local search around the incumbent solution. To account for reservoir uncertainties, optimization is performed on a diverse set of history matched reservoir model realizations, within an automated framework. The results show a significant improvement in predicted reservoir production performance over the remaining life of the field.
利用智能井进行油田规模生产优化
带有流入控制阀的智能井能够灵活地管理多个储层。本文以北海某生产油田为例,介绍了基于模型的流入控制阀设置优化方法。采用了一种两步非侵入式迭代模式搜索优化算法。第一步采用离散遗传算法对可行域进行全局搜索,第二步围绕现有解进行局部搜索。为了考虑油藏的不确定性,在自动化框架内,对不同的历史匹配油藏模型实现集进行优化。结果表明,在油田剩余生命周期内,预测油藏生产动态有了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信