{"title":"An improved superpixel-based saliency detection method","authors":"Xin Wang, Yunyan Zhou, Chen Ning","doi":"10.1109/ICIVC.2017.7984648","DOIUrl":null,"url":null,"abstract":"In this paper, an improved saliency detection method based on superpixel is proposed. First, the original image is segmented into a number of superpixels by simple linear iterative clustering, each of which has the consistent color and texture characteristics. Second, two different methods, namely, the sparse representation-based method as well as a center-surrounding idea-based approach, are applied to these superpixels to compute the initial saliency map and a center-surrounding map, respectively. Then these two maps are integrated in an additive way to obtain a modified saliency map. Compared to the initial saliency map, the modified one is more precise. Third, for the segmented superpixels, a normalized cut-based clustering method is used to cluster them into several clustering areas, and then the salient values in the same clustering area are averaged. Consequently, we can get a much more uniform saliency map. Experimental results show that, compared with the classical algorithms, the proposed method achieves a better performance since it can highlight the salient objects evenly and restrain the background clutters effectively.","PeriodicalId":181522,"journal":{"name":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC.2017.7984648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, an improved saliency detection method based on superpixel is proposed. First, the original image is segmented into a number of superpixels by simple linear iterative clustering, each of which has the consistent color and texture characteristics. Second, two different methods, namely, the sparse representation-based method as well as a center-surrounding idea-based approach, are applied to these superpixels to compute the initial saliency map and a center-surrounding map, respectively. Then these two maps are integrated in an additive way to obtain a modified saliency map. Compared to the initial saliency map, the modified one is more precise. Third, for the segmented superpixels, a normalized cut-based clustering method is used to cluster them into several clustering areas, and then the salient values in the same clustering area are averaged. Consequently, we can get a much more uniform saliency map. Experimental results show that, compared with the classical algorithms, the proposed method achieves a better performance since it can highlight the salient objects evenly and restrain the background clutters effectively.