Distributed Particle Filters for State Tracking on the Stiefel Manifold Using Tangent Space Statistics

C. Bordin, Caio Gomes de Figueredo, Marcelo G. S. Bruno
{"title":"Distributed Particle Filters for State Tracking on the Stiefel Manifold Using Tangent Space Statistics","authors":"C. Bordin, Caio Gomes de Figueredo, Marcelo G. S. Bruno","doi":"10.1109/icassp43922.2022.9746305","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel distributed diffusion algorithm for tracking the state of a dynamic system that evolves on the Stiefel manifold. To compress information exchanged between nodes, the algorithm builds a Gaussian parametric approximation to the particles that are previously projected onto the tangent space to the Stiefel manifold and mapped to real vectors. Observations from neighboring nodes are then assimilated for a general nonlinear observation model. Performance results are compared to those of competing linear diffusion Extended Kalman Filters and other particle filters.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a novel distributed diffusion algorithm for tracking the state of a dynamic system that evolves on the Stiefel manifold. To compress information exchanged between nodes, the algorithm builds a Gaussian parametric approximation to the particles that are previously projected onto the tangent space to the Stiefel manifold and mapped to real vectors. Observations from neighboring nodes are then assimilated for a general nonlinear observation model. Performance results are compared to those of competing linear diffusion Extended Kalman Filters and other particle filters.
基于切线空间统计的Stiefel流形状态跟踪的分布粒子滤波
本文介绍了一种新的分布扩散算法,用于跟踪在Stiefel流形上演化的动态系统的状态。为了压缩节点之间交换的信息,该算法对先前投影到Stiefel流形的切空间并映射到实向量的粒子建立高斯参数近似。然后将邻近节点的观测值同化为一般的非线性观测模型。将性能结果与线性扩散扩展卡尔曼滤波和其他粒子滤波进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信