Abnormal Behavior Detection via Sparse Reconstruction Analysis of Trajectory

Ce Li, Zhenjun Han, Qixiang Ye, Jianbin Jiao
{"title":"Abnormal Behavior Detection via Sparse Reconstruction Analysis of Trajectory","authors":"Ce Li, Zhenjun Han, Qixiang Ye, Jianbin Jiao","doi":"10.1109/ICIG.2011.104","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for abnormal behavior detection in surveillance videos via sparse reconstruction analysis. The motion trajectories of objects are firstly defined as fixed-length parametric vectors based on approximating cubic B-spline curves. Then the vectors are classified as behavior patterns and finally distinguished between normal and abnormal behaviors based on sparse reconstruction analysis, in which a classifier is constructed with sparse linear reconstruction coefficients by computing L1-norm minimization and sparse reconstruction residuals learning from labeled training samples. Experimental results on public dataset show the effectiveness of the proposed approach.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

This paper proposes a new method for abnormal behavior detection in surveillance videos via sparse reconstruction analysis. The motion trajectories of objects are firstly defined as fixed-length parametric vectors based on approximating cubic B-spline curves. Then the vectors are classified as behavior patterns and finally distinguished between normal and abnormal behaviors based on sparse reconstruction analysis, in which a classifier is constructed with sparse linear reconstruction coefficients by computing L1-norm minimization and sparse reconstruction residuals learning from labeled training samples. Experimental results on public dataset show the effectiveness of the proposed approach.
基于轨迹稀疏重建分析的异常行为检测
本文提出了一种基于稀疏重建分析的监控视频异常行为检测新方法。首先在逼近三次b样条曲线的基础上将物体的运动轨迹定义为定长参数向量;然后将向量分类为行为模式,最后基于稀疏重建分析区分正常和异常行为,其中通过计算l1 -范数最小化和从标记的训练样本中学习稀疏重建残差,构建具有稀疏线性重建系数的分类器。在公共数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信