A tensor decomposition model for longitudinal microbiome studies

Siyuan Ma, Hongzhe Li
{"title":"A tensor decomposition model for longitudinal microbiome studies","authors":"Siyuan Ma, Hongzhe Li","doi":"10.1214/22-aoas1661","DOIUrl":null,"url":null,"abstract":"Longitudinal microbiome studies can help delineate true biological signals from the high interindividual variability that is common in microbiome data. However, there are few methods available for unsupervised dimension reduction of time course microbial abundance observations. Existing methods do not fully observe the distribution characteristics of such data types, namely, zero-inflation, compositionality, and overdispersion. We present a tensor decomposition model and a semiparametric quasi-likelihood estimation method for the decomposition of longitudinal microbiome data, by gen-eralizing existing approaches in tensor decomposition of Gaussian data. Optimization is performed through projected gradient descent additionally allowing interpretability constraints. We show through simulation studies our method is able to recover low rank structures from microbiome time course data, better than existing approaches. Lastly, we apply our method to two existing longitudinal microbiome studies, to detect global microbial changes associated with dietary and pharmaceutical effects, as well as infant birth modes.","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aoas1661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Longitudinal microbiome studies can help delineate true biological signals from the high interindividual variability that is common in microbiome data. However, there are few methods available for unsupervised dimension reduction of time course microbial abundance observations. Existing methods do not fully observe the distribution characteristics of such data types, namely, zero-inflation, compositionality, and overdispersion. We present a tensor decomposition model and a semiparametric quasi-likelihood estimation method for the decomposition of longitudinal microbiome data, by gen-eralizing existing approaches in tensor decomposition of Gaussian data. Optimization is performed through projected gradient descent additionally allowing interpretability constraints. We show through simulation studies our method is able to recover low rank structures from microbiome time course data, better than existing approaches. Lastly, we apply our method to two existing longitudinal microbiome studies, to detect global microbial changes associated with dietary and pharmaceutical effects, as well as infant birth modes.
纵向微生物组研究的张量分解模型
纵向微生物组研究有助于从微生物组数据中常见的高度个体间差异中描述真正的生物信号。然而,对于时间过程微生物丰度观测的无监督降维方法很少。现有的方法并没有充分观察到这类数据类型的分布特征,即零膨胀、组合性和过度分散。在推广现有的高斯数据张量分解方法的基础上,提出了纵向微生物组数据分解的张量分解模型和半参数拟似然估计方法。优化通过投影梯度下降执行,另外允许可解释性约束。我们通过模拟研究表明,我们的方法能够从微生物组时间过程数据中恢复低秩结构,比现有方法更好。最后,我们将我们的方法应用于两项现有的纵向微生物组研究,以检测与饮食和药物效应以及婴儿出生模式相关的全球微生物变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信