T. Shimobaba, David Blinder, P. Schelkens, Yota Yamamoto, I. Hoshi, T. Kakue, T. Ito
{"title":"Deep-learning-assisted Hologram Calculation via Low-Sampling Holograms","authors":"T. Shimobaba, David Blinder, P. Schelkens, Yota Yamamoto, I. Hoshi, T. Kakue, T. Ito","doi":"10.1109/IIAI-AAI.2019.00188","DOIUrl":null,"url":null,"abstract":"Digital holograms can be calculated by simulating light wave propagation on a computer. Hologram calculations are used for three-dimensional displays. However, the calculations take a long time, and the data size of the calculated holograms becomes large. This study presents a deep-learning-assisted hologram calculation using low-sampling holograms. We calculate holograms with low-sampling rates, resulting in the acceleration of the hologram calculation and the decrease of the hologram size. However, the low-sampling holograms decrease the quality of the reconstructed images and will occur the aliasing errors when not satisfying the Nyquist rate. The proposed method uses a deep neural network to retrieve the full-sampling holograms from the low-sampling holograms. We show elementary results of the proposed method in numerical simulation.","PeriodicalId":136474,"journal":{"name":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2019.00188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Digital holograms can be calculated by simulating light wave propagation on a computer. Hologram calculations are used for three-dimensional displays. However, the calculations take a long time, and the data size of the calculated holograms becomes large. This study presents a deep-learning-assisted hologram calculation using low-sampling holograms. We calculate holograms with low-sampling rates, resulting in the acceleration of the hologram calculation and the decrease of the hologram size. However, the low-sampling holograms decrease the quality of the reconstructed images and will occur the aliasing errors when not satisfying the Nyquist rate. The proposed method uses a deep neural network to retrieve the full-sampling holograms from the low-sampling holograms. We show elementary results of the proposed method in numerical simulation.