Autoregressive Models for Solving the Problem of Forecasting Active Energy Complexes

M. A. Durova, A. Zein, S. Borisova, A. A. Mishin, D. Kan, S. K. Osipov
{"title":"Autoregressive Models for Solving the Problem of Forecasting Active Energy Complexes","authors":"M. A. Durova, A. Zein, S. Borisova, A. A. Mishin, D. Kan, S. K. Osipov","doi":"10.1109/REEPE57272.2023.10086906","DOIUrl":null,"url":null,"abstract":"This paper solves the problem of forecasting active energy complexes using autoregressive models. Forecasting in the energy business is one of the common tasks these days. Nowadays, forecasting helps with long-term strategic planning. However, different application fields and the duration of the forecast sometimes require a radically different approach, and there is no universal model and method that can equally effectively predict any result set. In this research paper, the implementation and analysis of 4 models are introduced: Simple Autoregressive Models (AR), Moving Average Models (MAq), Autoregressive Integrated Moving Average Models (ARIMA), and Seasonal AutoRegressive Integrated and Moving Average Models (SARIMA).","PeriodicalId":356187,"journal":{"name":"2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REEPE57272.2023.10086906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper solves the problem of forecasting active energy complexes using autoregressive models. Forecasting in the energy business is one of the common tasks these days. Nowadays, forecasting helps with long-term strategic planning. However, different application fields and the duration of the forecast sometimes require a radically different approach, and there is no universal model and method that can equally effectively predict any result set. In this research paper, the implementation and analysis of 4 models are introduced: Simple Autoregressive Models (AR), Moving Average Models (MAq), Autoregressive Integrated Moving Average Models (ARIMA), and Seasonal AutoRegressive Integrated and Moving Average Models (SARIMA).
求解活性能量复合物预测问题的自回归模型
本文利用自回归模型解决了有效能量复合物的预测问题。如今,能源行业的预测是一项常见任务。如今,预测有助于长期战略规划。然而,不同的应用领域和预测的持续时间有时需要完全不同的方法,并且没有通用的模型和方法可以同样有效地预测任何结果集。本文介绍了简单自回归模型(AR)、移动平均模型(MAq)、自回归综合移动平均模型(ARIMA)和季节性自回归综合移动平均模型(SARIMA) 4种模型的实现和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信