Optimal temporal resolution for decoding of visual stimuli in inferior temporal cortex

A. Babolhavaeji, S. Karimi, A. Ghaffari, A. Hamidinekoo, B. Vosoughi-Vahdat
{"title":"Optimal temporal resolution for decoding of visual stimuli in inferior temporal cortex","authors":"A. Babolhavaeji, S. Karimi, A. Ghaffari, A. Hamidinekoo, B. Vosoughi-Vahdat","doi":"10.1109/ICBME.2014.7043903","DOIUrl":null,"url":null,"abstract":"Inferior temporal (IT) cortex is the most important part of the brain and plays an important role in response to visual stimuli. In this study, object decoding has been performed using neuron spikes in IT cortex region. Single Unit Activity (SUA) was recorded from 123 neurons in IT cortex. Pseudo-population firing rate vectors were created, then dimension reduction was done and an Artificial Neural Network (ANN) was used for object decoding. Object decoding accuracy was calculated for various window lengths from 50 ms to 200 ms and various window steps from 25 ms to 100 ms. The results show that 150 ms length and 50 ms window step size gives an optimum performance in average accuracy.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Inferior temporal (IT) cortex is the most important part of the brain and plays an important role in response to visual stimuli. In this study, object decoding has been performed using neuron spikes in IT cortex region. Single Unit Activity (SUA) was recorded from 123 neurons in IT cortex. Pseudo-population firing rate vectors were created, then dimension reduction was done and an Artificial Neural Network (ANN) was used for object decoding. Object decoding accuracy was calculated for various window lengths from 50 ms to 200 ms and various window steps from 25 ms to 100 ms. The results show that 150 ms length and 50 ms window step size gives an optimum performance in average accuracy.
下颞叶皮层视觉刺激解码的最佳时间分辨率
下颞叶皮层是大脑中最重要的部分,对视觉刺激的反应起着重要的作用。在本研究中,利用IT皮质区域的神经元尖峰进行对象解码。记录123个IT皮质神经元的单单位活动(SUA)。首先建立伪种群发射率向量,然后进行降维,利用人工神经网络对目标进行解码。在不同的窗长(50 ms ~ 200 ms)和不同的窗步(25 ms ~ 100 ms)下计算对象解码精度。结果表明,150 ms的长度和50 ms的窗步长可以获得最佳的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信