Study on Sensitivity of Nano-Grain ZnO Gas Sensors

Y. Ma, W. L. Wang, K. Liao, C. Kong
{"title":"Study on Sensitivity of Nano-Grain ZnO Gas Sensors","authors":"Y. Ma, W. L. Wang, K. Liao, C. Kong","doi":"10.1177/1524511X02043537","DOIUrl":null,"url":null,"abstract":"The surface barriers at the neck of nano-ZnO gas elements are expressed in terms of the electrical potential inside a cylinder, and then the resistance, the sensitivity, and the grain-size effect are discussed. It is shown that the sensing property of nano-ZnO gas elements is influenced by the microstructural features, such as the grain size, the geometry, and the connectivity between grains. The difference between the neck-controlled sensitivity and the neck-grain-boundary- controlled sensitivity is large when the width of the depletion layer at the neck in air is comparable with the neck radius. It implies that although the grain-boundary resistance may be much smaller than the neck resistance it cannot be neglected. It is suggested that the decreasing of the ratio between the numbers of grain boundaries and necks is a possible approach to the development of nano-ZnO gas sensors with a high sensitivity.","PeriodicalId":246239,"journal":{"name":"Journal of Wide Bandgap Materials","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wide Bandgap Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1524511X02043537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

The surface barriers at the neck of nano-ZnO gas elements are expressed in terms of the electrical potential inside a cylinder, and then the resistance, the sensitivity, and the grain-size effect are discussed. It is shown that the sensing property of nano-ZnO gas elements is influenced by the microstructural features, such as the grain size, the geometry, and the connectivity between grains. The difference between the neck-controlled sensitivity and the neck-grain-boundary- controlled sensitivity is large when the width of the depletion layer at the neck in air is comparable with the neck radius. It implies that although the grain-boundary resistance may be much smaller than the neck resistance it cannot be neglected. It is suggested that the decreasing of the ratio between the numbers of grain boundaries and necks is a possible approach to the development of nano-ZnO gas sensors with a high sensitivity.
纳米ZnO气体传感器的灵敏度研究
将纳米zno气体元件颈部的表面势垒表示为圆柱体内的电势,并讨论了其电阻、灵敏度和晶粒尺寸效应。结果表明,纳米zno气体元件的传感性能受晶粒尺寸、几何形状和晶粒间连通性等微观结构特征的影响。当空气中颈部的耗尽层宽度与颈部半径相当时,颈部控制的灵敏度与颈部晶界控制的灵敏度之间的差异很大。这表明,尽管晶界阻力可能比颈部阻力小得多,但晶界阻力不可忽视。研究结果表明,减小晶界与晶颈数之比是开发高灵敏度纳米zno气体传感器的可能途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信