Greedy deep transform learning

Jyoti Maggu, A. Majumdar
{"title":"Greedy deep transform learning","authors":"Jyoti Maggu, A. Majumdar","doi":"10.1109/ICIP.2017.8296596","DOIUrl":null,"url":null,"abstract":"We introduce deep transform learning — a new tool for deep learning. Deeper representation is learnt by stacking one transform after another. The learning proceeds in a greedy way. The first layer learns the transform and features from the input training samples. Subsequent layers use the features (after activation) from the previous layers as training input. Experiments have been carried out with other deep representation learning tools — deep dictionary learning, stacked denoising autoencoder, deep belief network and PCANet (a version of convolutional neural network). Results show that our proposed technique is better than all the said techniques, at least on the benchmark datasets (MNIST, CIFAR-10 and SVHN) compared on.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce deep transform learning — a new tool for deep learning. Deeper representation is learnt by stacking one transform after another. The learning proceeds in a greedy way. The first layer learns the transform and features from the input training samples. Subsequent layers use the features (after activation) from the previous layers as training input. Experiments have been carried out with other deep representation learning tools — deep dictionary learning, stacked denoising autoencoder, deep belief network and PCANet (a version of convolutional neural network). Results show that our proposed technique is better than all the said techniques, at least on the benchmark datasets (MNIST, CIFAR-10 and SVHN) compared on.
贪婪深度变换学习
我们介绍了深度转换学习——一种新的深度学习工具。通过叠加一个又一个变换来学习更深层次的表示。学习以贪婪的方式进行。第一层从输入训练样本中学习变换和特征。后续层使用前一层的特征(激活后)作为训练输入。使用其他深度表示学习工具进行了实验-深度字典学习,堆叠去噪自编码器,深度信念网络和PCANet(卷积神经网络的一个版本)。结果表明,至少在基准数据集(MNIST, CIFAR-10和SVHN)上比较,我们提出的技术优于所有上述技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信