Non-linear input transformations for discriminative HMMs

F. Johansen, M. H. Johnsen
{"title":"Non-linear input transformations for discriminative HMMs","authors":"F. Johansen, M. H. Johnsen","doi":"10.1109/ICASSP.1994.389314","DOIUrl":null,"url":null,"abstract":"This paper deals with speaker-independent continuous speech recognition. Our approach is based on continuous density hidden Markov models with a non-linear input feature transformation performed by a multilayer perceptron. We discuss various optimisation criteria and provide results on a TIMIT phoneme recognition task, using single frame (mutual information or relative entropy) MMI embedded in Viterbi training, and a global MMI criterion. As expected, global MMI is found superior to the frame-based criterion for continuous recognition. We further observe that optimal sentence decoding is essential to achieve maximum recognition rate for models trained by global MMI. Finally, we find that the simple MLP input transformation, with five frames of context information, can increase the recognition rate significantly compared to just using delta parameters.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper deals with speaker-independent continuous speech recognition. Our approach is based on continuous density hidden Markov models with a non-linear input feature transformation performed by a multilayer perceptron. We discuss various optimisation criteria and provide results on a TIMIT phoneme recognition task, using single frame (mutual information or relative entropy) MMI embedded in Viterbi training, and a global MMI criterion. As expected, global MMI is found superior to the frame-based criterion for continuous recognition. We further observe that optimal sentence decoding is essential to achieve maximum recognition rate for models trained by global MMI. Finally, we find that the simple MLP input transformation, with five frames of context information, can increase the recognition rate significantly compared to just using delta parameters.<>
判别hmm的非线性输入变换
本文研究与说话人无关的连续语音识别。我们的方法是基于连续密度隐马尔可夫模型,并通过多层感知器进行非线性输入特征转换。我们讨论了各种优化标准,并提供了TIMIT音素识别任务的结果,使用嵌入在Viterbi训练中的单帧(互信息或相对熵)MMI和一个全局MMI标准。正如预期的那样,全局MMI优于基于帧的连续识别标准。我们进一步观察到,优化句子解码是实现全局MMI训练模型的最大识别率所必需的。最后,我们发现,与仅使用delta参数相比,使用五帧上下文信息的简单MLP输入变换可以显著提高识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信