Styx: A Data-Oriented Mutation Framework to Improve the Robustness of DNN

Meixi Liu, Weijiang Hong, Weiyu Pan, Chendong Feng, Zhenbang Chen, Ji Wang
{"title":"Styx: A Data-Oriented Mutation Framework to Improve the Robustness of DNN","authors":"Meixi Liu, Weijiang Hong, Weiyu Pan, Chendong Feng, Zhenbang Chen, Ji Wang","doi":"10.1145/3324884.3418903","DOIUrl":null,"url":null,"abstract":"The robustness of deep neural network (DNN) is critical and challenging to ensure. In this paper, we propose a general data-oriented mutation framework, called Styx, to improve the robustness of DNN. Styx generates new training data by slightly mutating the training data. In this way, Styx ensures the DNN's accuracy on the test dataset while improving the adaptability to small perturbations, i.e., improving the robustness. We have instantiated Styx for image classification and proposed pixel-level mutation rules that are applicable to any image classification DNNs. We have applied Styx on several commonly used benchmarks and compared Styx with the representative adversarial training methods. The preliminary experimental results indicate the effectiveness of Styx.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The robustness of deep neural network (DNN) is critical and challenging to ensure. In this paper, we propose a general data-oriented mutation framework, called Styx, to improve the robustness of DNN. Styx generates new training data by slightly mutating the training data. In this way, Styx ensures the DNN's accuracy on the test dataset while improving the adaptability to small perturbations, i.e., improving the robustness. We have instantiated Styx for image classification and proposed pixel-level mutation rules that are applicable to any image classification DNNs. We have applied Styx on several commonly used benchmarks and compared Styx with the representative adversarial training methods. The preliminary experimental results indicate the effectiveness of Styx.
Styx:一个面向数据的突变框架,以提高深度神经网络的鲁棒性
深度神经网络(DNN)的鲁棒性是一个非常重要且具有挑战性的问题。在本文中,我们提出了一个通用的面向数据的突变框架,称为Styx,以提高深度神经网络的鲁棒性。Styx通过稍微改变训练数据来生成新的训练数据。这样,Styx保证了DNN在测试数据集上的准确性,同时提高了对小扰动的适应性,即提高了鲁棒性。我们已经实例化了Styx用于图像分类,并提出了适用于任何图像分类dnn的像素级突变规则。我们将Styx应用于几种常用的基准测试,并将Styx与具有代表性的对抗性训练方法进行了比较。初步实验结果表明了Styx的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信