Autonomous Multiagent Space Exploration with High-Level Human Feedback

M. Colby, L. Yliniemi, Kagan Tumer
{"title":"Autonomous Multiagent Space Exploration with High-Level Human Feedback","authors":"M. Colby, L. Yliniemi, Kagan Tumer","doi":"10.2514/1.I010379","DOIUrl":null,"url":null,"abstract":"Robotic space-exploration missions have always pushed the limits of science and technology, and will continue to do so by their very nature. Such missions are particularly challenging, as they operate in environments with high uncertainty, light-time delays, and high mission costs. Artificial-intelligence-based multiagent systems can alleviate these concerns by 1) creating autonomous multirobot teams that can function in uncertain environments, 2) navigating and operating without time-sensitive commands from Earth-bound scientists, and 3) spreading the mission cost across multiple platforms that will eliminate the danger of total mission loss in the case of a malfunctioning robot. In this work, a novel human in-the-loop cooperative coevolutionary algorithm is presented to train a multirobot system exploring an unknown environment. Autonomous robots learn to make low-level control decisions to maximize scientific data acquisition, whereas human scientists on Earth learn the changing mission profiles and pr...","PeriodicalId":179117,"journal":{"name":"J. Aerosp. Inf. Syst.","volume":"853 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Aerosp. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.I010379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Robotic space-exploration missions have always pushed the limits of science and technology, and will continue to do so by their very nature. Such missions are particularly challenging, as they operate in environments with high uncertainty, light-time delays, and high mission costs. Artificial-intelligence-based multiagent systems can alleviate these concerns by 1) creating autonomous multirobot teams that can function in uncertain environments, 2) navigating and operating without time-sensitive commands from Earth-bound scientists, and 3) spreading the mission cost across multiple platforms that will eliminate the danger of total mission loss in the case of a malfunctioning robot. In this work, a novel human in-the-loop cooperative coevolutionary algorithm is presented to train a multirobot system exploring an unknown environment. Autonomous robots learn to make low-level control decisions to maximize scientific data acquisition, whereas human scientists on Earth learn the changing mission profiles and pr...
基于高水平人类反馈的自主多智能体空间探索
机器人太空探索任务一直在推动科学和技术的极限,并将继续这样做。这类任务尤其具有挑战性,因为它们在高度不确定性、轻型延迟和高任务成本的环境中运行。基于人工智能的多智能体系统可以通过以下方式缓解这些担忧:1)创建可以在不确定环境中工作的自主多机器人团队;2)在没有地球科学家时间敏感命令的情况下进行导航和操作;3)将任务成本分摊到多个平台上,这将消除机器人发生故障时任务总损失的危险。在这项工作中,提出了一种新的人在环协同进化算法来训练一个探索未知环境的多机器人系统。自主机器人学习做出低级控制决策,以最大限度地获取科学数据,而地球上的人类科学家学习不断变化的任务概况和目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信