{"title":"Attention shifts during action sequence recognition for social robots","authors":"B. Khadhouri, Y. Demiris","doi":"10.1109/ICAR.2005.1507451","DOIUrl":null,"url":null,"abstract":"Human action understanding is an important component of our research towards social robots that can operate among humans. A crucial element of this component is visual attention - where should a robot direct its limited visual and computational resources during the perception of a human action? In this paper, we propose a computational model of an attention mechanism that combines the saliency of top-down elements, based on multiple hypotheses about the demonstrated action, with the saliency of bottom up components. We implement our attention mechanism on a robot, and examine its performance during the observation of object-directed human actions. Furthermore, we propose a method for resetting this model that allows it to work on multiple behaviours observed in a sequence. We also implement and investigate this method's performance on the robot","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human action understanding is an important component of our research towards social robots that can operate among humans. A crucial element of this component is visual attention - where should a robot direct its limited visual and computational resources during the perception of a human action? In this paper, we propose a computational model of an attention mechanism that combines the saliency of top-down elements, based on multiple hypotheses about the demonstrated action, with the saliency of bottom up components. We implement our attention mechanism on a robot, and examine its performance during the observation of object-directed human actions. Furthermore, we propose a method for resetting this model that allows it to work on multiple behaviours observed in a sequence. We also implement and investigate this method's performance on the robot