{"title":"A deep learning and genetic algorithm based feature selection processes on Leukemia Data","authors":"R. Francese, M. Frasca, M. Risi, G. Tortora","doi":"10.1109/IV56949.2022.00074","DOIUrl":null,"url":null,"abstract":"Acute Leukemia is classified in terms of two distinct classes: Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML). This paper aims at defining a feature selection analysis process mainly based on Deep Learning for classifying the acute leukemia type. The considered dataset consists in data of patients affected by both the leukemia types. Both the leukemia types are characterized by a list of identical genes for all the patients. The analysis exploits feature selection techniques for reducing the consistent number of variables (genes). To this aim, we use linear models for differential expression for microarray data, and an autoencoder based unsupervised deep learning model to simplify and speed up the classification. Then, classification models have been implemented with the use of a deep neural network (DNN), obtaining an accuracy of approximately 92%. Moreover, the results have been compared with the ones provided by an approach based on support vector machines (SVM), giving an accuracy of 87,39%. Another feature selection approach based on genetic algorithms has been experimented, with worse performances. We also conducted a gene enrichment analysis based on the functional annotation of the differentially expressed genes. As a result, a differentially expressed pathway between the two pathologies has been detected.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Acute Leukemia is classified in terms of two distinct classes: Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML). This paper aims at defining a feature selection analysis process mainly based on Deep Learning for classifying the acute leukemia type. The considered dataset consists in data of patients affected by both the leukemia types. Both the leukemia types are characterized by a list of identical genes for all the patients. The analysis exploits feature selection techniques for reducing the consistent number of variables (genes). To this aim, we use linear models for differential expression for microarray data, and an autoencoder based unsupervised deep learning model to simplify and speed up the classification. Then, classification models have been implemented with the use of a deep neural network (DNN), obtaining an accuracy of approximately 92%. Moreover, the results have been compared with the ones provided by an approach based on support vector machines (SVM), giving an accuracy of 87,39%. Another feature selection approach based on genetic algorithms has been experimented, with worse performances. We also conducted a gene enrichment analysis based on the functional annotation of the differentially expressed genes. As a result, a differentially expressed pathway between the two pathologies has been detected.