Predictive Data Grouping and Placement for Cloud-Based Elastic Server Infrastructures

Juan M. Tirado, Daniel Higuero, Florin Isaila, J. Carretero
{"title":"Predictive Data Grouping and Placement for Cloud-Based Elastic Server Infrastructures","authors":"Juan M. Tirado, Daniel Higuero, Florin Isaila, J. Carretero","doi":"10.1109/CCGrid.2011.49","DOIUrl":null,"url":null,"abstract":"Workload variations on Internet platforms such as YouTube, Flickr, LastFM require novel approaches to dynamic resource provisioning in order to meet QoS requirements, while reducing the Total Cost of Ownership (TCO) of the infrastructures. The economy of scale promise of cloud computing is a great opportunity to approach this problem, by developing elastic large scale server infrastructures. However, a proactive approach to dynamic resource provisioning requires prediction models forecasting future load patterns. On the other hand, unexpected volume and data spikes require reactive provisioning for serving unexpected surges in workloads. When workload can not be predicted, adequate data grouping and placement algorithms may facilitate agile scaling up and down of an infrastructure. In this paper, we analyze a dynamic workload of an on-line music portal and present an elastic Web infrastructure that adapts to workload variations by dynamically scaling up and down servers. The workload is predicted by an autoregressive model capturing trends and seasonal patterns. Further, for enhancing data locality, we propose a predictive data grouping based on the history of content access of a user community. Finally, in order to facilitate agile elasticity, we present a data placement based on workload and access pattern prediction. The experimental results demonstrate that our forecasting model predicts workload with a high precision. Further, the predictive data grouping and placement methods provide high locality, load balance and high utilization of resources, allowing a server infrastructure to scale up and down depending on workload.","PeriodicalId":376385,"journal":{"name":"2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2011.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Workload variations on Internet platforms such as YouTube, Flickr, LastFM require novel approaches to dynamic resource provisioning in order to meet QoS requirements, while reducing the Total Cost of Ownership (TCO) of the infrastructures. The economy of scale promise of cloud computing is a great opportunity to approach this problem, by developing elastic large scale server infrastructures. However, a proactive approach to dynamic resource provisioning requires prediction models forecasting future load patterns. On the other hand, unexpected volume and data spikes require reactive provisioning for serving unexpected surges in workloads. When workload can not be predicted, adequate data grouping and placement algorithms may facilitate agile scaling up and down of an infrastructure. In this paper, we analyze a dynamic workload of an on-line music portal and present an elastic Web infrastructure that adapts to workload variations by dynamically scaling up and down servers. The workload is predicted by an autoregressive model capturing trends and seasonal patterns. Further, for enhancing data locality, we propose a predictive data grouping based on the history of content access of a user community. Finally, in order to facilitate agile elasticity, we present a data placement based on workload and access pattern prediction. The experimental results demonstrate that our forecasting model predicts workload with a high precision. Further, the predictive data grouping and placement methods provide high locality, load balance and high utilization of resources, allowing a server infrastructure to scale up and down depending on workload.
基于云的弹性服务器基础设施的预测性数据分组和放置
Internet平台(如YouTube、Flickr、LastFM)上的工作负载变化需要新颖的动态资源配置方法,以满足QoS要求,同时降低基础设施的总拥有成本(TCO)。通过开发弹性的大规模服务器基础设施,云计算的规模经济承诺为解决这个问题提供了一个很好的机会。然而,主动提供动态资源的方法需要预测模型来预测未来的负载模式。另一方面,意外的容量和数据峰值需要响应性配置,以服务意外的工作负载激增。当无法预测工作负载时,适当的数据分组和放置算法可以促进基础设施的灵活伸缩。在本文中,我们分析了在线音乐门户的动态工作负载,并提出了一个弹性Web基础设施,该基础设施通过动态缩放服务器来适应工作负载的变化。工作量由捕获趋势和季节模式的自回归模型预测。此外,为了增强数据的局部性,我们提出了一种基于用户社区内容访问历史的预测性数据分组。最后,为了促进敏捷弹性,我们提出了一种基于工作负载和访问模式预测的数据放置方法。实验结果表明,该预测模型对工作负荷的预测精度较高。此外,预测性数据分组和放置方法提供了高局部性、负载平衡和高资源利用率,允许服务器基础设施根据工作负载向上和向下扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信