On Higher-Order Reachability Games vs May Reachability

Kazuyuki Asada, H. Katsura, N. Kobayashi
{"title":"On Higher-Order Reachability Games vs May Reachability","authors":"Kazuyuki Asada, H. Katsura, N. Kobayashi","doi":"10.48550/arXiv.2203.08416","DOIUrl":null,"url":null,"abstract":"We consider the reachability problem for higher-order functional programs and study the relationship between reachability games (i.e., the reachability problem for programs with angelic and demonic nondeterminism) and may-reachability (i.e., the reachability problem for programs with only angelic nondeterminism). We show that reachability games for order-n programs can be reduced to may-reachability problems for order(n + 1) programs, and vice versa. We formalize the reductions by using higher-order fixpoint logic and prove their correctness. We also discuss applications of the reductions to higher-order program verification.","PeriodicalId":404583,"journal":{"name":"Reachability Problems","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reachability Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.08416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the reachability problem for higher-order functional programs and study the relationship between reachability games (i.e., the reachability problem for programs with angelic and demonic nondeterminism) and may-reachability (i.e., the reachability problem for programs with only angelic nondeterminism). We show that reachability games for order-n programs can be reduced to may-reachability problems for order(n + 1) programs, and vice versa. We formalize the reductions by using higher-order fixpoint logic and prove their correctness. We also discuss applications of the reductions to higher-order program verification.
高阶可达性游戏vs低阶可达性游戏
我们考虑了高阶函数程序的可达性问题,并研究了可达性博弈(即具有天使不确定性和恶魔不确定性的程序的可达性问题)与可能可达性(即仅具有天使不确定性的程序的可达性问题)之间的关系。我们证明了阶(n)规划的可达性博弈可以简化为阶(n + 1)规划的可达性问题,反之亦然。利用高阶不动点逻辑形式化了这些约简,并证明了它们的正确性。我们还讨论了约简在高阶程序验证中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信