Direct parametric imaging of reversible tracers using partial dynamic data

Kyungsang Kim, G. Fakhri, Quanzheng Li
{"title":"Direct parametric imaging of reversible tracers using partial dynamic data","authors":"Kyungsang Kim, G. Fakhri, Quanzheng Li","doi":"10.1109/NSSMIC.2016.8069385","DOIUrl":null,"url":null,"abstract":"Direct parametric estimation in positron emission tomography (PET) has been developed to compute the voxel-based kinetic parameters in the reconstruction process, obtaining more accurate physiological information of tracer uptake. Although the direct parametric imaging can achieve accurate kinetic analysis, the long acquisition time is still painful, particularly for sick and old patients. To address this issue, we explore the feasibility to estimate voxel-based kinetic parameters using partial dynamic data, specifically the first and last 10 minutes of a typical dynamic scan. To improve the quality of the direct parametric imaging with partial dynamic data, we propose a novel penalized direct estimation method containing log-likelihood, ridge regression and patch-based joint similarity penalty of kinetic images, in which the structural similarity weight of K1 can be used for improving the features in other kinetic images (k2 ∼ k4). In our optimization, the alternating direction method of multipliers (ADMM) with a separable quadratic surrogate (SQS) is exploited. We validate the proposed method using a brain phantom, and demonstrate that the proposed method outperforms the conventional direct estimation methods even using partial dynamic data.","PeriodicalId":184587,"journal":{"name":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2016.8069385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Direct parametric estimation in positron emission tomography (PET) has been developed to compute the voxel-based kinetic parameters in the reconstruction process, obtaining more accurate physiological information of tracer uptake. Although the direct parametric imaging can achieve accurate kinetic analysis, the long acquisition time is still painful, particularly for sick and old patients. To address this issue, we explore the feasibility to estimate voxel-based kinetic parameters using partial dynamic data, specifically the first and last 10 minutes of a typical dynamic scan. To improve the quality of the direct parametric imaging with partial dynamic data, we propose a novel penalized direct estimation method containing log-likelihood, ridge regression and patch-based joint similarity penalty of kinetic images, in which the structural similarity weight of K1 can be used for improving the features in other kinetic images (k2 ∼ k4). In our optimization, the alternating direction method of multipliers (ADMM) with a separable quadratic surrogate (SQS) is exploited. We validate the proposed method using a brain phantom, and demonstrate that the proposed method outperforms the conventional direct estimation methods even using partial dynamic data.
使用部分动态数据的可逆示踪剂的直接参数成像
在正电子发射断层扫描(PET)中建立了直接参数估计方法,用于计算重建过程中基于体素的动力学参数,从而获得更准确的示踪剂摄取生理信息。虽然直接参数化成像可以实现精确的动力学分析,但采集时间长仍然是痛苦的,特别是对病人和老年患者。为了解决这个问题,我们探索了使用部分动态数据(特别是典型动态扫描的前10分钟和最后10分钟)估计基于体素的动力学参数的可行性。为了提高部分动态数据直接参数成像的质量,我们提出了一种新的惩罚性直接估计方法,该方法包含对数似然、脊回归和基于patch的动态图像联合相似惩罚,其中K1的结构相似权值可用于改善其他动态图像(k2 ~ k4)的特征。在我们的优化中,利用乘法器的交替方向法(ADMM)与可分离的二次代理(SQS)。我们使用脑模型验证了所提出的方法,并证明即使使用部分动态数据,所提出的方法也优于传统的直接估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信