Multi-objective design optimisation of four-bar mechanisms using a hybrid ICA-GA algorithm

Nejlaoui Mohamed, Najlawi Bilel, Affi Zouhaier, Romdhane Lotfi
{"title":"Multi-objective design optimisation of four-bar mechanisms using a hybrid ICA-GA algorithm","authors":"Nejlaoui Mohamed, Najlawi Bilel, Affi Zouhaier, Romdhane Lotfi","doi":"10.1504/IJRIS.2017.10007136","DOIUrl":null,"url":null,"abstract":"This work presents a novel approach to the multi-objective optimal design of four-bar mechanisms. Three conflicting objective functions are considered simultaneously, i.e., the tracking error (TE), the transmission angle deviation from 90° (TA) and the maximum angular velocity ratio (MAVR). To improve the convergence and the diversity of the results, an imperialist competitive algorithm is coupled with a genetic algorithm (ICA-GA) and it is used to solve this problem. A comparative study of the proposed ICA-GA shows that this method yields better results and more diverse results than other methods.","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"718 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRIS.2017.10007136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work presents a novel approach to the multi-objective optimal design of four-bar mechanisms. Three conflicting objective functions are considered simultaneously, i.e., the tracking error (TE), the transmission angle deviation from 90° (TA) and the maximum angular velocity ratio (MAVR). To improve the convergence and the diversity of the results, an imperialist competitive algorithm is coupled with a genetic algorithm (ICA-GA) and it is used to solve this problem. A comparative study of the proposed ICA-GA shows that this method yields better results and more diverse results than other methods.
基于混合ICA-GA算法的四杆机构多目标设计优化
本文为四杆机构的多目标优化设计提供了一种新的方法。同时考虑三个相互冲突的目标函数,即跟踪误差(TE)、传输角偏离90°(TA)和最大角速度比(MAVR)。为了提高结果的收敛性和多样性,将帝国主义竞争算法与遗传算法(ICA-GA)相结合来解决这一问题。对所提出的ICA-GA方法进行了比较研究,结果表明该方法比其他方法具有更好的结果和更多样化的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信