3D pose estimation of vehicles using a stereo camera

Björn Barrois, Stela Hristova, C. Wohler, F. Kummert, Christoph Hermes
{"title":"3D pose estimation of vehicles using a stereo camera","authors":"Björn Barrois, Stela Hristova, C. Wohler, F. Kummert, Christoph Hermes","doi":"10.1109/IVS.2009.5164289","DOIUrl":null,"url":null,"abstract":"This study introduces an approach to three-dimensional vehicle pose estimation using a stereo camera system. After computation of stereo and optical flow on the investigated scene, a four-dimensional clustering approach separates the static from the moving objects in the scene. The iterative closest point algorithm (ICP) estimates the vehicle pose using a cuboid as a weak vehicle model. In contrast to classical ICP optimisation a polar distance metric is used which especially takes into account the error distribution of the stereo measurement process. The tracking approach is based on tracking-by-detection such that no temporal filtering is used. The method is evaluated on seven different real-world sequences, where different stereo algorithms, baseline distances, distance metrics, and optimisation algorithms are examined. The results show that the proposed polar distance metric yields a higher accuracy for yaw angle estimation of vehicles than the common Euclidean distance metric, especially when using pixel-accurate stereo points.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

This study introduces an approach to three-dimensional vehicle pose estimation using a stereo camera system. After computation of stereo and optical flow on the investigated scene, a four-dimensional clustering approach separates the static from the moving objects in the scene. The iterative closest point algorithm (ICP) estimates the vehicle pose using a cuboid as a weak vehicle model. In contrast to classical ICP optimisation a polar distance metric is used which especially takes into account the error distribution of the stereo measurement process. The tracking approach is based on tracking-by-detection such that no temporal filtering is used. The method is evaluated on seven different real-world sequences, where different stereo algorithms, baseline distances, distance metrics, and optimisation algorithms are examined. The results show that the proposed polar distance metric yields a higher accuracy for yaw angle estimation of vehicles than the common Euclidean distance metric, especially when using pixel-accurate stereo points.
使用立体摄像机对车辆进行三维姿态估计
本文介绍了一种利用立体相机系统进行三维车辆姿态估计的方法。在计算了所研究场景的立体流和光流之后,采用四维聚类方法将场景中的静态物体与运动物体分离开来。迭代最近点算法(ICP)使用长方体作为弱车辆模型来估计车辆姿态。与经典的ICP优化相反,使用了极距度量,特别是考虑到立体测量过程的误差分布。跟踪方法基于检测跟踪,不使用时间滤波。该方法在七个不同的现实世界序列上进行了评估,其中检查了不同的立体算法、基线距离、距离度量和优化算法。结果表明,相对于常用的欧氏距离度量,所提出的极坐标距离度量对车辆偏航角的估计具有更高的精度,特别是在使用像素级精度的立体点时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信