{"title":"Design for improved fault tolerance in large synchronous machines","authors":"A. Tessarolo, F. Luise","doi":"10.1109/WEMDCD.2015.7194488","DOIUrl":null,"url":null,"abstract":"Fault tolerance is a basic requirement for modern electric motors and generators and can be achieved with a number of integrated approaches, like condition monitoring, post-fault control strategies and suitable system design architectures. In particular, this paper focuses on large synchronous machines (both permanent-magnet and wound-field ones) and discusses the main design provisions that can be adopted to improve their ability to withstand various kinds of fault. The fault-tolerant design solutions recommended for small-power machines are critically reviewed and their scalability to higher machine sizes is discussed also referring to practical industrial realizations. The most promising potential for fault-tolerance design is recognized in large low-speed high-pole-count permanent-magnet synchronous machines (e.g. for ship propulsion and wind power generation) thanks to their suitability for highly-modular multi-unit fractional-slot concentrated-winding architectures.","PeriodicalId":173358,"journal":{"name":"2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)","volume":"590 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WEMDCD.2015.7194488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Fault tolerance is a basic requirement for modern electric motors and generators and can be achieved with a number of integrated approaches, like condition monitoring, post-fault control strategies and suitable system design architectures. In particular, this paper focuses on large synchronous machines (both permanent-magnet and wound-field ones) and discusses the main design provisions that can be adopted to improve their ability to withstand various kinds of fault. The fault-tolerant design solutions recommended for small-power machines are critically reviewed and their scalability to higher machine sizes is discussed also referring to practical industrial realizations. The most promising potential for fault-tolerance design is recognized in large low-speed high-pole-count permanent-magnet synchronous machines (e.g. for ship propulsion and wind power generation) thanks to their suitability for highly-modular multi-unit fractional-slot concentrated-winding architectures.