Estimation of dynamic neural activity including informative priors into a Kalman filter based approach

J. D. Martínez-Vargas, J. S. Castaño-Candamil, G. Castellanos-Domínguez
{"title":"Estimation of dynamic neural activity including informative priors into a Kalman filter based approach","authors":"J. D. Martínez-Vargas, J. S. Castaño-Candamil, G. Castellanos-Domínguez","doi":"10.1109/IWOBI.2014.6913953","DOIUrl":null,"url":null,"abstract":"The EEG recordings contain dynamic information inherent to its nature, therefore, the accurate estimation of neural activity is highly dependent on the inclusion of such information in the inverse problem solution. The present study proposes the inclusion of informative priors into a Kalman filter based solution, aimed to include the different dynamics present on the data. This is achieved by decomposing a space-time-frequency, here after s-f-t, representation of the data to extract different dynamics contained in the EEG signals. Attained results using physiological-based simulations, show that including more informative s-f-t priors along with a temporal-based solution, the reconstruction of neural activity can be improved, in the present study, we achieved an average localization error of 4 mm, compared to 47 mm using the baseline approach.","PeriodicalId":433659,"journal":{"name":"3rd IEEE International Work-Conference on Bioinspired Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd IEEE International Work-Conference on Bioinspired Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2014.6913953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The EEG recordings contain dynamic information inherent to its nature, therefore, the accurate estimation of neural activity is highly dependent on the inclusion of such information in the inverse problem solution. The present study proposes the inclusion of informative priors into a Kalman filter based solution, aimed to include the different dynamics present on the data. This is achieved by decomposing a space-time-frequency, here after s-f-t, representation of the data to extract different dynamics contained in the EEG signals. Attained results using physiological-based simulations, show that including more informative s-f-t priors along with a temporal-based solution, the reconstruction of neural activity can be improved, in the present study, we achieved an average localization error of 4 mm, compared to 47 mm using the baseline approach.
基于卡尔曼滤波的动态神经活动估计方法包括信息先验
脑电图记录包含其固有的动态信息,因此,神经活动的准确估计高度依赖于在反问题解中包含这些信息。本研究提出将信息先验包含到基于卡尔曼滤波的解决方案中,旨在包括数据上存在的不同动态。这是通过分解空间-时间-频率来实现的,这里是在s-f-t之后,数据表示提取EEG信号中包含的不同动态。使用基于生理学的模拟获得的结果表明,包括更多信息的s-f-t先验以及基于时间的解决方案,可以改善神经活动的重建,在本研究中,我们实现了平均定位误差为4毫米,而使用基线方法为47毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信