Bayesian inversion technique of olive tree biophysical properties using Sentinel-2 images

H. Abdelmoula, A. Kallel, J. Roujean, Sihem Châabouni, K. Gargouri, M. Ghrab, J. Gastellu-Etchegorry, N. Lauret
{"title":"Bayesian inversion technique of olive tree biophysical properties using Sentinel-2 images","authors":"H. Abdelmoula, A. Kallel, J. Roujean, Sihem Châabouni, K. Gargouri, M. Ghrab, J. Gastellu-Etchegorry, N. Lauret","doi":"10.1109/ATSIP.2018.8364492","DOIUrl":null,"url":null,"abstract":"In this paper, we study the estimation of olive tree biophysical properties driven by Sentinel-2 (S2) image inversion. The latter is based on the forward/backward radiative transfer model (RTM). The forward step is done simulating the DART model on a realistic olive tree mock-up, whereas the backward is done based on a coupling between the Look UP Table (LUT) and the Markov Chain Monte Carlo (MCMC). The parameters Leaf area index (LAI), chlorophyll (Cab) water (Cw) contents and mesophyll structure (N) are therefore derived. Soil reflectance is pre-calculated based on an upscaling of the S2 resolution to 3m using Planet images. Moreover to obtain a significant representation of the local heterogeneity, S2 are upscaled to the 80m resolution. The estimation results are promising.","PeriodicalId":332253,"journal":{"name":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2018.8364492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the estimation of olive tree biophysical properties driven by Sentinel-2 (S2) image inversion. The latter is based on the forward/backward radiative transfer model (RTM). The forward step is done simulating the DART model on a realistic olive tree mock-up, whereas the backward is done based on a coupling between the Look UP Table (LUT) and the Markov Chain Monte Carlo (MCMC). The parameters Leaf area index (LAI), chlorophyll (Cab) water (Cw) contents and mesophyll structure (N) are therefore derived. Soil reflectance is pre-calculated based on an upscaling of the S2 resolution to 3m using Planet images. Moreover to obtain a significant representation of the local heterogeneity, S2 are upscaled to the 80m resolution. The estimation results are promising.
基于Sentinel-2图像的橄榄树生物物理性质贝叶斯反演技术
本文研究了基于Sentinel-2 (S2)图像反演的橄榄树生物物理特性估计方法。后者基于正向/反向辐射传输模型(RTM)。向前的步骤是在真实的橄榄树模型上模拟DART模型,而向后的步骤是基于查找表(LUT)和马尔可夫链蒙特卡罗(MCMC)之间的耦合来完成的。由此推导出叶面积指数(LAI)、叶绿素(Cab)、水分(Cw)含量和叶肉结构(N)等参数。土壤反射率是基于使用Planet图像将S2分辨率提升到3m而预先计算的。此外,为了更好地反映局部非均质性,S2被放大到80m分辨率。估计结果是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信