Exploiting BERT to Improve Aspect-Based Sentiment Analysis Performance on Persian Language

H. Jafarian, Amirhosein Taghavi, Alireza Javaheri, Reza Rawassizadeh
{"title":"Exploiting BERT to Improve Aspect-Based Sentiment Analysis Performance on Persian Language","authors":"H. Jafarian, Amirhosein Taghavi, Alireza Javaheri, Reza Rawassizadeh","doi":"10.1109/ICWR51868.2021.9443131","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis (ABSA) is a more detailed task in sentiment analysis, by identifying opinion polarity toward a certain aspect in a text. This method is attracting more attention from the community, due to the fact that it provides more thorough and useful information. However, there are few language-specific researches on Persian language. The present research aims to improve the ABSA on the Persian Pars-ABSA dataset. This research shows the potential of using pre-trained BERT model and taking advantage of using sentence-pair input on an ABSA task. The results indicate that employing Pars-BERT pre-trained model along with natural language inference auxiliary sentence (NLI-M) could boost the ABSA task accuracy up to 91% which is 5.5% (absolute) higher than state-of-the-art studies on Pars-ABSA dataset.","PeriodicalId":377597,"journal":{"name":"2021 7th International Conference on Web Research (ICWR)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR51868.2021.9443131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Aspect-based sentiment analysis (ABSA) is a more detailed task in sentiment analysis, by identifying opinion polarity toward a certain aspect in a text. This method is attracting more attention from the community, due to the fact that it provides more thorough and useful information. However, there are few language-specific researches on Persian language. The present research aims to improve the ABSA on the Persian Pars-ABSA dataset. This research shows the potential of using pre-trained BERT model and taking advantage of using sentence-pair input on an ABSA task. The results indicate that employing Pars-BERT pre-trained model along with natural language inference auxiliary sentence (NLI-M) could boost the ABSA task accuracy up to 91% which is 5.5% (absolute) higher than state-of-the-art studies on Pars-ABSA dataset.
利用BERT提高波斯语基于方面的情感分析性能
基于方面的情感分析(ABSA)是情感分析中的一项更详细的任务,它通过识别文本中某个方面的意见极性。由于该方法提供了更全面、更有用的信息,因此越来越受到社区的关注。然而,针对波斯语的语言研究却很少。本研究旨在改进波斯Pars-ABSA数据集上的ABSA。本研究显示了在ABSA任务中使用预训练BERT模型和利用句子对输入的潜力。结果表明,使用Pars-BERT预训练模型和自然语言推理辅助句(NLI-M)可以将ABSA任务的准确率提高到91%,比目前在Pars-ABSA数据集上的研究高出5.5%(绝对)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信