Learning Long-Term Time Series with Generative Topographic Mapping

Feng Zhang
{"title":"Learning Long-Term Time Series with Generative Topographic Mapping","authors":"Feng Zhang","doi":"10.1109/IJCNN.2007.4370947","DOIUrl":null,"url":null,"abstract":"We propose a generative topographic mapping (GTM) based nonlinear model for long-term time series prediction. As a modification of Kohonen self-organizing maps (SOM), GTM has been applied to data classification, visualization and other machine learning problems, however, limited research have been proposed in time series analysis. With a double application of GTM algorithm, a specially designed approach can quantize input data to store temporal evolvement information for trend prediction. Experimental results demonstrate the improved forecast accuracy in long-term trend learning.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4370947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a generative topographic mapping (GTM) based nonlinear model for long-term time series prediction. As a modification of Kohonen self-organizing maps (SOM), GTM has been applied to data classification, visualization and other machine learning problems, however, limited research have been proposed in time series analysis. With a double application of GTM algorithm, a specially designed approach can quantize input data to store temporal evolvement information for trend prediction. Experimental results demonstrate the improved forecast accuracy in long-term trend learning.
用生成式地形映射学习长期时间序列
提出了一种基于生成式地形映射(GTM)的非线性长期时间序列预测模型。作为Kohonen自组织图(SOM)的改进,GTM已被应用于数据分类、可视化等机器学习问题,但在时间序列分析方面的研究有限。在GTM算法的双重应用中,设计了一种特殊的方法,将输入数据量化存储时间演变信息,用于趋势预测。实验结果表明,长期趋势学习提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信