An FPGA-based systolic array to accelerate the BWA-MEM genomic mapping algorithm

Ernst Houtgast, V. Sima, K. Bertels, Z. Al-Ars
{"title":"An FPGA-based systolic array to accelerate the BWA-MEM genomic mapping algorithm","authors":"Ernst Houtgast, V. Sima, K. Bertels, Z. Al-Ars","doi":"10.1109/SAMOS.2015.7363679","DOIUrl":null,"url":null,"abstract":"We present the first accelerated implementation of BWA-MEM, a popular genome sequence alignment algorithm widely used in next generation sequencing genomics pipelines. The Smith-Waterman-like sequence alignment kernel requires a significant portion of overall execution time. We propose and evaluate a number of FPGA-based systolic array architectures, presenting optimizations generally applicable to variable length Smith-Waterman execution. Our kernel implementation is up to 3× faster, compared to software-only execution. This translates into an overall application speedup of up to 45%, which is 96% of the theoretically maximum achievable speedup when accelerating only this kernel.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

We present the first accelerated implementation of BWA-MEM, a popular genome sequence alignment algorithm widely used in next generation sequencing genomics pipelines. The Smith-Waterman-like sequence alignment kernel requires a significant portion of overall execution time. We propose and evaluate a number of FPGA-based systolic array architectures, presenting optimizations generally applicable to variable length Smith-Waterman execution. Our kernel implementation is up to 3× faster, compared to software-only execution. This translates into an overall application speedup of up to 45%, which is 96% of the theoretically maximum achievable speedup when accelerating only this kernel.
基于fpga的心脏收缩阵列加速BWA-MEM基因组图谱算法
我们提出了BWA-MEM的第一个加速实现,BWA-MEM是一种流行的基因组序列比对算法,广泛用于下一代测序基因组学管道。类似smith - waterman的序列对齐内核需要大量的总执行时间。我们提出并评估了一些基于fpga的收缩阵列架构,提出了通常适用于可变长度Smith-Waterman执行的优化。与纯软件执行相比,我们的内核实现要快3倍。这意味着整个应用程序的加速高达45%,这是仅加速该内核时理论上可实现的最大加速的96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信