Predictive Causality of Granger Test for Long Run Equilibrium to Photovoltaic System

Yannick Fanchette, H. Ramenah, Philippe Casin, M. Benne, C. Tanougast, K. Adjallah
{"title":"Predictive Causality of Granger Test for Long Run Equilibrium to Photovoltaic System","authors":"Yannick Fanchette, H. Ramenah, Philippe Casin, M. Benne, C. Tanougast, K. Adjallah","doi":"10.1109/IDAACS.2019.8924303","DOIUrl":null,"url":null,"abstract":"The high irradiance in tropical area is certainly favorable to photovoltaic (PV) power output, since the efficiency depends on the solar radiation intensity. However the increase of cells temperature causes conversely a fall of the yield of the modules. This decrease in the performance of PV modules due to temperature effect also causes proportional voltage decrease. This drop in performance is at the expense of destabilisation of the electrical network and if the electrical power output of modules is planned for a total grid injection. A time series may be useful in forecasting another time series and this statistical hypothesis test is called the Granger causality test. In this paper, we show that the Granger causality can be applied to PV parameters time series and an error correction model is used to determine a long term relationship of power output for PV systems.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The high irradiance in tropical area is certainly favorable to photovoltaic (PV) power output, since the efficiency depends on the solar radiation intensity. However the increase of cells temperature causes conversely a fall of the yield of the modules. This decrease in the performance of PV modules due to temperature effect also causes proportional voltage decrease. This drop in performance is at the expense of destabilisation of the electrical network and if the electrical power output of modules is planned for a total grid injection. A time series may be useful in forecasting another time series and this statistical hypothesis test is called the Granger causality test. In this paper, we show that the Granger causality can be applied to PV parameters time series and an error correction model is used to determine a long term relationship of power output for PV systems.
光伏系统长期平衡格兰杰检验的预测因果关系
热带地区的高辐照度当然有利于光伏发电的输出,因为其效率取决于太阳辐射强度。然而,电池温度的升高反而导致组件产率的下降。由于温度效应,光伏组件的性能下降也会导致成比例的电压下降。这种性能的下降是以电网的不稳定为代价的,如果模块的电力输出计划用于整个电网注入。一个时间序列可能对预测另一个时间序列有用,这种统计假设检验称为格兰杰因果关系检验。在本文中,我们证明格兰杰因果关系可以应用于PV参数时间序列,并使用误差校正模型来确定PV系统输出功率的长期关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信