Verification of an automotive active leveler

N. Elia, B. Brandin
{"title":"Verification of an automotive active leveler","authors":"N. Elia, B. Brandin","doi":"10.1109/ACC.1999.786493","DOIUrl":null,"url":null,"abstract":"We analyze an active leveler designed for automotive applications. The objective of the system is to maintain the height of the car body to a fixed value, despite changes in loads and driving conditions. The objective of the paper is to propose a verification method for checking that certain design specifications, or system performances are achieved. We are able to compute exact bounds on the maximum suspension deflection for the given model of the system and road disturbance. The motivation for this work comes from the disappointing results of Stanner et al. (1997) where the problem was approached by using HYTECH. The numerical and computational complexity problems reported in the above article have their common roots in the need to fit and approximate the actual model with a linear hybrid model.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.786493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We analyze an active leveler designed for automotive applications. The objective of the system is to maintain the height of the car body to a fixed value, despite changes in loads and driving conditions. The objective of the paper is to propose a verification method for checking that certain design specifications, or system performances are achieved. We are able to compute exact bounds on the maximum suspension deflection for the given model of the system and road disturbance. The motivation for this work comes from the disappointing results of Stanner et al. (1997) where the problem was approached by using HYTECH. The numerical and computational complexity problems reported in the above article have their common roots in the need to fit and approximate the actual model with a linear hybrid model.
汽车主动矫直机的验证
我们分析了一种为汽车应用而设计的有源调平器。该系统的目标是在负载和驾驶条件发生变化的情况下,将车身高度保持在固定值。本文的目的是提出一种验证方法,用于检查某些设计规范或系统性能是否达到。对于给定的系统模型和道路扰动,我们能够计算出最大悬架挠度的精确界限。这项工作的动机来自于斯坦纳等人(1997)令人失望的结果,他们使用HYTECH来解决这个问题。上述文章中报告的数值和计算复杂性问题的共同根源在于需要用线性混合模型拟合和近似实际模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信