Identification of Epileptic Seizures using Autoencoders and Convolutional Neural Network

P. Divya, B. Aruna Devi, Srinivasan Prabakar, K. Porkumaran, R. Kannan, N. M. Nor, I. Elamvazuthi
{"title":"Identification of Epileptic Seizures using Autoencoders and Convolutional Neural Network","authors":"P. Divya, B. Aruna Devi, Srinivasan Prabakar, K. Porkumaran, R. Kannan, N. M. Nor, I. Elamvazuthi","doi":"10.1109/ICIAS49414.2021.9642570","DOIUrl":null,"url":null,"abstract":"Contemporary application of machine learning has paved a way for the medical diagnosis automation without any manual intervention. Once such application is early deduction of the epileptic seizures. Earlier identification of seizures aids specialists towards diagnosis. This paper analyzes on the detection of EEG epileptic seizures using Autoencoders, Convolutional Neural Network (CNN), and a multi class Stacked Autoencoder-CN model. These prediction models were analyzed on the intracranial EEG data set from15 real time patients, CHB-MIT dataset and P300 dataset. The results in python, proved for Stacked Autoencoder-Convolution Neural (SAE-CN) model to give optimum and effective solution in terms of higher speed and reduction in training time of the classifier and better probability of 0.925. This analysis proposes the idea of pre-prepared systems for other EEGrelated applications.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Contemporary application of machine learning has paved a way for the medical diagnosis automation without any manual intervention. Once such application is early deduction of the epileptic seizures. Earlier identification of seizures aids specialists towards diagnosis. This paper analyzes on the detection of EEG epileptic seizures using Autoencoders, Convolutional Neural Network (CNN), and a multi class Stacked Autoencoder-CN model. These prediction models were analyzed on the intracranial EEG data set from15 real time patients, CHB-MIT dataset and P300 dataset. The results in python, proved for Stacked Autoencoder-Convolution Neural (SAE-CN) model to give optimum and effective solution in terms of higher speed and reduction in training time of the classifier and better probability of 0.925. This analysis proposes the idea of pre-prepared systems for other EEGrelated applications.
使用自编码器和卷积神经网络识别癫痫发作
机器学习的当代应用为无需人工干预的医疗诊断自动化铺平了道路。一旦这样应用是癫痫发作的早期推断。早期发现癫痫发作有助于专家做出诊断。本文分析了利用自编码器、卷积神经网络(CNN)和多层堆叠自编码器-神经网络模型检测脑电图癫痫发作的方法。这些预测模型分别在15例实时患者的颅内脑电图数据集、CHB-MIT数据集和P300数据集上进行分析。python实验结果证明,对于Stacked Autoencoder-Convolution Neural (SAE-CN)模型,在分类器训练速度更快、训练时间更短、概率为0.925的情况下,给出了最优有效的解决方案。这种分析提出了为其他与eegreated相关的应用程序预先准备系统的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信