Effectiveness of Feature Extraction by PCA-Based Detection and Naive Bayes Classifier for Glaucoma Images

Shiny Christobel, D. Vimala, J. Athanesious, S. C. E. Singh, Sivaraj Murugan
{"title":"Effectiveness of Feature Extraction by PCA-Based Detection and Naive Bayes Classifier for Glaucoma Images","authors":"Shiny Christobel, D. Vimala, J. Athanesious, S. C. E. Singh, Sivaraj Murugan","doi":"10.1155/2022/4802872","DOIUrl":null,"url":null,"abstract":"After cataract, glaucoma is one of the second leading retinal diseases in the world. This paper presents the methodology to detect the glaucoma using principal component analysis. The images are involved in dilation as a preprocessing, enhancement using the contrast limited adaptive histogram equalization method, and followed by the extraction of features using principal component analysis. The extracted features are classified using support vector machine, Naive Bayes, and K-nearest neighbor classifiers. Comparing with other classifiers, the Naive Bayes provides high accuracy of 95% which demonstrates the effectiveness of the feature extraction and the classifier.","PeriodicalId":204253,"journal":{"name":"Int. J. Digit. Multim. Broadcast.","volume":"63 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Digit. Multim. Broadcast.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4802872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

After cataract, glaucoma is one of the second leading retinal diseases in the world. This paper presents the methodology to detect the glaucoma using principal component analysis. The images are involved in dilation as a preprocessing, enhancement using the contrast limited adaptive histogram equalization method, and followed by the extraction of features using principal component analysis. The extracted features are classified using support vector machine, Naive Bayes, and K-nearest neighbor classifiers. Comparing with other classifiers, the Naive Bayes provides high accuracy of 95% which demonstrates the effectiveness of the feature extraction and the classifier.
基于pca的青光眼图像检测与朴素贝叶斯分类器特征提取的有效性
青光眼是仅次于白内障的世界第二大视网膜疾病之一。本文介绍了用主成分分析法检测青光眼的方法。对图像进行预处理,利用对比度有限的自适应直方图均衡化方法进行增强,然后利用主成分分析提取特征。提取的特征使用支持向量机、朴素贝叶斯和k近邻分类器进行分类。与其他分类器相比,朴素贝叶斯提供了高达95%的准确率,证明了特征提取和分类器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信