Cavity optomechanics with a laser-engineered optical trap

P. Sesin, S. Anguiano, A. Bruchhausen, A. Lemaître, A. Fainstein
{"title":"Cavity optomechanics with a laser-engineered optical trap","authors":"P. Sesin, S. Anguiano, A. Bruchhausen, A. Lemaître, A. Fainstein","doi":"10.1103/PHYSREVB.103.L081301","DOIUrl":null,"url":null,"abstract":"Laser engineered exciton-polariton networks could lead to dynamically configurable integrated optical circuitry and quantum devices. Combining cavity optomechanics with electrodynamics in laser configurable hybrid designs constitutes a platform for the vibrational control, conversion, and transport of signals. With this aim we investigate 3D optical traps laser-induced in quantum-well embedded semiconductor planar microcavities. We show that the laser generated and controlled discrete states of the traps dramatically modify the interaction between photons and phonons confined in the resonators, accessing through coupling of photoelastic origin $g_\\mathrm{0}/2\\pi\\sim 1.7$ MHz an optomechanical cooperativity $C>1$ for mW excitation. The quenching of Stokes processes and double-resonant enhancement of anti-Stokes ones involving pairs of discrete optical states in the side-band resolved regime, allows the optomechanical cooling of 180 GHz bulk acoustic waves, starting from room temperature down to $\\sim120$ K. These results pave the way for dynamical tailoring of optomechanical actuation in the extremely-high-frequency range (30-300 GHz) for future network and quantum technologies.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.L081301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Laser engineered exciton-polariton networks could lead to dynamically configurable integrated optical circuitry and quantum devices. Combining cavity optomechanics with electrodynamics in laser configurable hybrid designs constitutes a platform for the vibrational control, conversion, and transport of signals. With this aim we investigate 3D optical traps laser-induced in quantum-well embedded semiconductor planar microcavities. We show that the laser generated and controlled discrete states of the traps dramatically modify the interaction between photons and phonons confined in the resonators, accessing through coupling of photoelastic origin $g_\mathrm{0}/2\pi\sim 1.7$ MHz an optomechanical cooperativity $C>1$ for mW excitation. The quenching of Stokes processes and double-resonant enhancement of anti-Stokes ones involving pairs of discrete optical states in the side-band resolved regime, allows the optomechanical cooling of 180 GHz bulk acoustic waves, starting from room temperature down to $\sim120$ K. These results pave the way for dynamical tailoring of optomechanical actuation in the extremely-high-frequency range (30-300 GHz) for future network and quantum technologies.
激光工程光阱的腔光力学
激光工程激子-极化子网络可以导致动态配置的集成光学电路和量子器件。在激光可配置混合设计中,将腔光力学与电动力学相结合构成了振动控制、信号转换和传输的平台。为此,我们研究了激光在量子阱嵌入半导体平面微腔中诱导的三维光学陷阱。我们发现激光产生和控制陷阱的离散状态极大地改变了谐振腔中光子和声子之间的相互作用,通过光弹性起源$g_\mathrm{0}/2\pi\sim 1.7$ MHz的耦合和光力学协同性$C>1$来获得mW激发。Stokes过程的猝灭和反Stokes过程的双共振增强,涉及对边带分解的离散光态,允许180 GHz体声波的光力学冷却,从室温到$\sim120$ k。这些结果为未来网络和量子技术在极高频范围(30-300 GHz)的光力学驱动的动态定制铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信