GDSim: Benchmarking Geo-Distributed Data Center Schedulers

Daniel S. F. Alves, K. Obraczka, A. Kabbani
{"title":"GDSim: Benchmarking Geo-Distributed Data Center Schedulers","authors":"Daniel S. F. Alves, K. Obraczka, A. Kabbani","doi":"10.1109/CloudNet53349.2021.9657143","DOIUrl":null,"url":null,"abstract":"As cloud providers scale up their data centers and distribute them around the world to meet demand, proposing new job schedulers that take into account data center geographical distribution have been receiving considerable attention from the data center management research and practitioner community. However, testing and benchmarking new schedulers for geo-distributed data centers is complicated by the lack of a common, easily extensible experimental platform. To address this gap, we propose GDSim, an open-source job scheduling simulation environment for geo-distributed data centers that aims at facilitating development, testing, and evaluation of new geo-distributed schedulers. We showcase GDSim by using it to reproduce experiments and results for recently proposed geodistributed job schedulers, as well as testing those schedulers under new conditions which can reveal trends that have not been previously uncovered.","PeriodicalId":369247,"journal":{"name":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet53349.2021.9657143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As cloud providers scale up their data centers and distribute them around the world to meet demand, proposing new job schedulers that take into account data center geographical distribution have been receiving considerable attention from the data center management research and practitioner community. However, testing and benchmarking new schedulers for geo-distributed data centers is complicated by the lack of a common, easily extensible experimental platform. To address this gap, we propose GDSim, an open-source job scheduling simulation environment for geo-distributed data centers that aims at facilitating development, testing, and evaluation of new geo-distributed schedulers. We showcase GDSim by using it to reproduce experiments and results for recently proposed geodistributed job schedulers, as well as testing those schedulers under new conditions which can reveal trends that have not been previously uncovered.
GDSim:对地理分布式数据中心调度程序进行基准测试
随着云提供商扩展其数据中心并将其分布到世界各地以满足需求,提出考虑数据中心地理分布的新作业调度器已经受到数据中心管理研究和从业者社区的相当大的关注。然而,由于缺乏通用的、易于扩展的实验平台,对地理分布式数据中心的新调度器进行测试和基准测试变得非常复杂。为了解决这一差距,我们提出了GDSim,这是一个用于地理分布式数据中心的开源作业调度模拟环境,旨在促进新的地理分布式调度程序的开发、测试和评估。我们通过使用GDSim来重现最近提出的地理分布式作业调度器的实验和结果,以及在新条件下测试这些调度器来展示GDSim,这些调度器可以揭示以前未发现的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信