A New Primal-Dual Interior-Point Algorithm for Convex Quadratic Symmetric Cone Optimization Based on a Parametric Kernel Function

Guoqiang Wang, Fayan Wang
{"title":"A New Primal-Dual Interior-Point Algorithm for Convex Quadratic Symmetric Cone Optimization Based on a Parametric Kernel Function","authors":"Guoqiang Wang, Fayan Wang","doi":"10.1109/CSO.2012.52","DOIUrl":null,"url":null,"abstract":"In this paper, we present a class of primal-dual interior-point algorithms for convex quadratic symmetric cone optimization based on a parametric kernel function, which has been introduced for linear optimization. By using Euclidean Jordan algebras, we derive the iteration bounds that match the currently best known iteration bounds for large- and small-update methods, which are as good as the linear optimization analogue.","PeriodicalId":170543,"journal":{"name":"2012 Fifth International Joint Conference on Computational Sciences and Optimization","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2012.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a class of primal-dual interior-point algorithms for convex quadratic symmetric cone optimization based on a parametric kernel function, which has been introduced for linear optimization. By using Euclidean Jordan algebras, we derive the iteration bounds that match the currently best known iteration bounds for large- and small-update methods, which are as good as the linear optimization analogue.
一种新的基于参数核函数的凸二次对称锥优化的原对偶内点算法
本文提出了一类基于参数核函数的凸二次对称锥优化的原对偶内点算法。通过使用欧几里得约当代数,我们推导出与当前已知的大型和小型更新方法的迭代边界相匹配的迭代边界,其效果与线性优化模拟一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信