AI-Based Safety Production Accident Prevention Mechanism in Smart Enterprises

Jing Fu, Zipeng Han
{"title":"AI-Based Safety Production Accident Prevention Mechanism in Smart Enterprises","authors":"Jing Fu, Zipeng Han","doi":"10.4018/ijdst.291082","DOIUrl":null,"url":null,"abstract":"Enterprises have accumulated a large number of accident data resources for safety production, but the corresponding safety production information processing capacity is insufficient, resulting in the value of massive data not being effectively used, and further restricting the in-depth study of accidents. Enterprise safety managers cannot learn lessons from historical accidents in a timely manner and effectively prevent them, leading to repeated occurrences of similar accidents. Therefore, based on the above problems, this paper aims to construct a mining process for the cause of safety production accidents based on LDA topic model. According to the accident data structure, select a data mining method suitable for its structural characteristics to maximize the utilization of accident data. According to the sequence of initial identification of accident information, discovery of safety problems, and transformation of safety knowledge, the valuable information in historical accident data can be fully excavated, so as to provide effective suggestions for accident prevention.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.291082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enterprises have accumulated a large number of accident data resources for safety production, but the corresponding safety production information processing capacity is insufficient, resulting in the value of massive data not being effectively used, and further restricting the in-depth study of accidents. Enterprise safety managers cannot learn lessons from historical accidents in a timely manner and effectively prevent them, leading to repeated occurrences of similar accidents. Therefore, based on the above problems, this paper aims to construct a mining process for the cause of safety production accidents based on LDA topic model. According to the accident data structure, select a data mining method suitable for its structural characteristics to maximize the utilization of accident data. According to the sequence of initial identification of accident information, discovery of safety problems, and transformation of safety knowledge, the valuable information in historical accident data can be fully excavated, so as to provide effective suggestions for accident prevention.
基于人工智能的智能企业安全生产事故预防机制
企业为安全生产积累了大量的事故数据资源,但相应的安全生产信息处理能力不足,导致海量数据的价值没有得到有效利用,进一步制约了事故的深入研究。企业安全管理者不能及时从历史事故中吸取教训,有效预防,导致类似事故反复发生。因此,基于上述问题,本文旨在构建一个基于LDA主题模型的安全生产事故原因挖掘过程。根据事故数据结构,选择适合其结构特点的数据挖掘方法,最大限度地利用事故数据。按照事故信息初始识别、安全问题发现、安全知识转化的顺序,充分挖掘历史事故数据中的有价值信息,为事故预防提供有效建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信