Fanyi Duanmu, Xin Feng, Xiaoqing Zhu, Wai-tian Tan, Yao Wang
{"title":"A Multi-View Pedestrian Tracking Framework Based on Graph Matching","authors":"Fanyi Duanmu, Xin Feng, Xiaoqing Zhu, Wai-tian Tan, Yao Wang","doi":"10.1109/MIPR.2018.00072","DOIUrl":null,"url":null,"abstract":"In the applications of video monitoring over large public or private spaces, multiple cameras are required to cover the entire space and resolve the problems of occlusion, object intersection and so on. In this work, a novel multi-view pedestrian tracking framework is proposed to simultaneously detect and associate human objects across views using graph matching techniques to fully exploit the object features and the spatial/temporal relationships among the objects. Experimental results are provided to demonstrate the accuracy of our proposed framework.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In the applications of video monitoring over large public or private spaces, multiple cameras are required to cover the entire space and resolve the problems of occlusion, object intersection and so on. In this work, a novel multi-view pedestrian tracking framework is proposed to simultaneously detect and associate human objects across views using graph matching techniques to fully exploit the object features and the spatial/temporal relationships among the objects. Experimental results are provided to demonstrate the accuracy of our proposed framework.