Mask-based Text Scoring for Product Title Summarization

Xinyi Guan, Shun Long, Weiheng Zhu, Silei Cao, Fangting Liao
{"title":"Mask-based Text Scoring for Product Title Summarization","authors":"Xinyi Guan, Shun Long, Weiheng Zhu, Silei Cao, Fangting Liao","doi":"10.1109/ICSAI57119.2022.10005399","DOIUrl":null,"url":null,"abstract":"In e-commerce, long product titles with rich information help attract users, but they are usually truncated for display on small-screen mobile devices, which results in neglection of important information and in turn low click-through rate. This paper presents a novel product title summarization method via the use of a mask-based text information scoring network. Via quantified evaluation of expressiveness, the most telling points are identified from the original title for a concise version which best retains its content. Our experiments show that, even without external information, our proposed method MPTS outperforms established benchmark models by 1.48% (ROUGE-1), 5.11% (ROUGE-2) and 1.37% (ROUGE-L) respectively.","PeriodicalId":339547,"journal":{"name":"2022 8th International Conference on Systems and Informatics (ICSAI)","volume":"465 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI57119.2022.10005399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In e-commerce, long product titles with rich information help attract users, but they are usually truncated for display on small-screen mobile devices, which results in neglection of important information and in turn low click-through rate. This paper presents a novel product title summarization method via the use of a mask-based text information scoring network. Via quantified evaluation of expressiveness, the most telling points are identified from the original title for a concise version which best retains its content. Our experiments show that, even without external information, our proposed method MPTS outperforms established benchmark models by 1.48% (ROUGE-1), 5.11% (ROUGE-2) and 1.37% (ROUGE-L) respectively.
基于面具的产品标题摘要文本评分
在电子商务中,信息丰富的长产品标题有助于吸引用户,但在小屏幕的移动设备上,它们通常被截断,从而导致忽略了重要信息,从而降低了点击率。本文提出了一种基于掩码的文本信息评分网络的产品标题摘要方法。通过对表达能力的量化评价,从原标题中找出最能说明问题的地方,以获得最能保留其内容的简洁版本。我们的实验表明,即使没有外部信息,我们提出的方法的MPTS分别比已建立的基准模型高1.48% (ROUGE-1), 5.11% (ROUGE-2)和1.37% (ROUGE-L)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信