Duplicate image detection in a stream of web visual data

Etienne Gadeski, H. Borgne, Adrian Daniel Popescu
{"title":"Duplicate image detection in a stream of web visual data","authors":"Etienne Gadeski, H. Borgne, Adrian Daniel Popescu","doi":"10.1109/CBMI.2015.7153614","DOIUrl":null,"url":null,"abstract":"We consider the problem of indexing and searching image duplicates in streaming visual data. This task requires a fast image descriptor, a small memory footprint for each signature and a quick search algorithm. To this end, we propose a new descriptor satisfying the aforementioned requirements. We evaluate our method on two different datasets with the use of different sets of distractor images, leading to large-scale image collections (up to 85 million images). We compare our method to the state of the art and show it exhibits among the best detection performances but is much faster (one to two orders of magnitude).","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of indexing and searching image duplicates in streaming visual data. This task requires a fast image descriptor, a small memory footprint for each signature and a quick search algorithm. To this end, we propose a new descriptor satisfying the aforementioned requirements. We evaluate our method on two different datasets with the use of different sets of distractor images, leading to large-scale image collections (up to 85 million images). We compare our method to the state of the art and show it exhibits among the best detection performances but is much faster (one to two orders of magnitude).
网页视觉数据流中的重复图像检测
研究了流视觉数据中图像副本的索引和搜索问题。该任务需要一个快速的图像描述符,每个签名占用的内存较小,以及快速的搜索算法。为此,我们提出了一个满足上述要求的新描述符。我们在两个不同的数据集上评估我们的方法,使用不同的分心图像集,导致大规模的图像收集(多达8500万张图像)。我们将我们的方法与最先进的方法进行比较,发现它具有最佳的检测性能,但速度要快得多(一到两个数量级)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信