Geometric Structure Based High Frequency Data Distribution GARCH Model and Empirical Analysis

Yang Li, C. Yuan
{"title":"Geometric Structure Based High Frequency Data Distribution GARCH Model and Empirical Analysis","authors":"Yang Li, C. Yuan","doi":"10.1109/ICCMS.2010.64","DOIUrl":null,"url":null,"abstract":"High frequency stock return data tend to exhibit characteristics such as volatility clustering, volatility persistence, leverage effects, and properties of abnormal unconditional distributions reflected in the form of skewness, high peakedness, and excess kurtosis. Although traditional GARCH models that employ leptokurtic distributions have been found useful to account for the conditional heteroscedasticity and leptokurtosis, most people directly apply the GARCH models to the raw data. This paper presents a novel geometric structure based on the raw data. We apply the GARCH models to the geometric structures. Preliminary tests generate a preponderance of evidence to support the innovative geometric structure specification over conventional competing alternatives presented in the literature.","PeriodicalId":153175,"journal":{"name":"2010 Second International Conference on Computer Modeling and Simulation","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2010.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High frequency stock return data tend to exhibit characteristics such as volatility clustering, volatility persistence, leverage effects, and properties of abnormal unconditional distributions reflected in the form of skewness, high peakedness, and excess kurtosis. Although traditional GARCH models that employ leptokurtic distributions have been found useful to account for the conditional heteroscedasticity and leptokurtosis, most people directly apply the GARCH models to the raw data. This paper presents a novel geometric structure based on the raw data. We apply the GARCH models to the geometric structures. Preliminary tests generate a preponderance of evidence to support the innovative geometric structure specification over conventional competing alternatives presented in the literature.
基于几何结构的高频数据分布GARCH模型及实证分析
高频股票收益数据往往表现出波动聚类、波动持续性、杠杆效应等特征,并表现为偏度、高峰、过峰度等异常无条件分布特征。虽然传统的GARCH模型采用细峰分布已被发现对解释条件异方差和细峰分布是有用的,但大多数人直接将GARCH模型应用于原始数据。本文提出了一种基于原始数据的新型几何结构。我们将GARCH模型应用于几何结构。初步测试产生的证据优势,以支持创新的几何结构规范优于传统的竞争性替代方案,在文献中提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信