A. Townsend, S. Eikenberry, Nicholas A Barth, R. Stelter, S. Jeram
{"title":"Bifrost: an ultra-low-cost cross-dispersed optical echelle spectrograph","authors":"A. Townsend, S. Eikenberry, Nicholas A Barth, R. Stelter, S. Jeram","doi":"10.1117/12.2576278","DOIUrl":null,"url":null,"abstract":"For on the order of a thousand dollars, we designed and built a high-resolution (R~19,000) optical spectrograph covering 400-950nm, designed to observe bright targets with small telescopes. Innovative 3D printing methods allow us to accurately and cheaply mount and house inexpensive commercial-off-the-shelf (COTS) optical components, including a DSLR camera lens. Bifrost is a fiber-fed spectrograph compatible with our existing and similarly inexpensive 3D-printed acquisition/guide system (compatible with a number of small telescopes, including the Meade LX200 series). A high resolution spectrograph with broadband coverage on a small telescope is optimal for cadence-sensitive spectroscopic variables; our targets of interest include high-mass X-ray binaries, ultra-magnetic stars, and the jets of the microquasar SS 433.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ground-based and Airborne Instrumentation for Astronomy VIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2576278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For on the order of a thousand dollars, we designed and built a high-resolution (R~19,000) optical spectrograph covering 400-950nm, designed to observe bright targets with small telescopes. Innovative 3D printing methods allow us to accurately and cheaply mount and house inexpensive commercial-off-the-shelf (COTS) optical components, including a DSLR camera lens. Bifrost is a fiber-fed spectrograph compatible with our existing and similarly inexpensive 3D-printed acquisition/guide system (compatible with a number of small telescopes, including the Meade LX200 series). A high resolution spectrograph with broadband coverage on a small telescope is optimal for cadence-sensitive spectroscopic variables; our targets of interest include high-mass X-ray binaries, ultra-magnetic stars, and the jets of the microquasar SS 433.