{"title":"Acting selfish for the good of all: contextual bandits for resource-efficient transmission of vehicular sensor data","authors":"Benjamin Sliwa, Rick Adam, C. Wietfeld","doi":"10.1145/3397166.3413466","DOIUrl":null,"url":null,"abstract":"In this work, we present Black Spot-aware Contextual Bandit (BS-CB) as a novel client-based method for resource-efficient opportunistic transmission of delay-tolerant vehicular sensor data. BS-CB applies a hybrid approach which brings together all major machine learning disciplines - supervised, unsupervised, and reinforcement learning - in order to autonomously schedule vehicular sensor data transmissions with respect to the expected resource efficiency. Within a comprehensive real world performance evaluation in the public cellular networks of three Mobile Network Operators (MNOs), it is found that 1) The average uplink data rate is improved by 125%-195% 2) The apparently selfish goal of data rate optimization reduces the amount of occupied cell resources by 84%-89% 3) The average transmission-related power consumption can be reduced by 53%-75% 4) The price to pay is an additional buffering delay due to the opportunistic medium access strategy.","PeriodicalId":122577,"journal":{"name":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397166.3413466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, we present Black Spot-aware Contextual Bandit (BS-CB) as a novel client-based method for resource-efficient opportunistic transmission of delay-tolerant vehicular sensor data. BS-CB applies a hybrid approach which brings together all major machine learning disciplines - supervised, unsupervised, and reinforcement learning - in order to autonomously schedule vehicular sensor data transmissions with respect to the expected resource efficiency. Within a comprehensive real world performance evaluation in the public cellular networks of three Mobile Network Operators (MNOs), it is found that 1) The average uplink data rate is improved by 125%-195% 2) The apparently selfish goal of data rate optimization reduces the amount of occupied cell resources by 84%-89% 3) The average transmission-related power consumption can be reduced by 53%-75% 4) The price to pay is an additional buffering delay due to the opportunistic medium access strategy.