Poly Methyl Methacrylate (Pmma) Based Polyaniline Composite for Ammonia (Nh3) Gas Sensors

M. Panigrahi, B. Adhikari
{"title":"Poly Methyl Methacrylate (Pmma) Based Polyaniline Composite for Ammonia (Nh3) Gas Sensors","authors":"M. Panigrahi, B. Adhikari","doi":"10.34256/ioriip2126","DOIUrl":null,"url":null,"abstract":"Inorganic acids (HCl, H2SO4, and H3PO4) doped-PMMA/PANI composites are prepared by in-situ technique via oxidation-polymerization process. Different techniques such as XRD, FTIR, UV-Visible, four-probe method are used to characterize the composite. Presence of different chemical group of the doped composites is analysed by ATR-FTIR spectroscopic analysis. Charge carrier behaviour of the doped composite is analyzed by UV-Visible spectroscopy. Band gap (Eg) of the doped composites is determined from UV-Visible absorption analysis using Tauc expression. The estimated direct band gap energy (Eg) is found to be 1.93 eV (for HCl doped PMMA/PANI composite), 1.19 eV (for H2SO4 doped PMMA/PANI composite), and 1.71 eV (for H3PO4 doped PMMA/PANI composite), respectively. DC-conductivity is measured with and without magnetic field. Temperature dependent DC conductivity is also measured. In addition, we were discussed the response of ammonia (NH3) gas with polyaniline-based sensor materials.","PeriodicalId":368918,"journal":{"name":"Polyaniline based Composite for Gas Sensors","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyaniline based Composite for Gas Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34256/ioriip2126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic acids (HCl, H2SO4, and H3PO4) doped-PMMA/PANI composites are prepared by in-situ technique via oxidation-polymerization process. Different techniques such as XRD, FTIR, UV-Visible, four-probe method are used to characterize the composite. Presence of different chemical group of the doped composites is analysed by ATR-FTIR spectroscopic analysis. Charge carrier behaviour of the doped composite is analyzed by UV-Visible spectroscopy. Band gap (Eg) of the doped composites is determined from UV-Visible absorption analysis using Tauc expression. The estimated direct band gap energy (Eg) is found to be 1.93 eV (for HCl doped PMMA/PANI composite), 1.19 eV (for H2SO4 doped PMMA/PANI composite), and 1.71 eV (for H3PO4 doped PMMA/PANI composite), respectively. DC-conductivity is measured with and without magnetic field. Temperature dependent DC conductivity is also measured. In addition, we were discussed the response of ammonia (NH3) gas with polyaniline-based sensor materials.
基于聚甲基丙烯酸甲酯(Pmma)的聚苯胺复合材料用于氨(Nh3)气体传感器
采用原位氧化聚合法制备了无机酸(HCl、H2SO4和H3PO4)掺杂pmma /PANI复合材料。采用XRD、FTIR、uv -可见光、四探针等技术对复合材料进行表征。利用ATR-FTIR光谱分析了掺杂复合材料中不同化学基团的存在。用紫外可见光谱分析了掺杂复合材料的载流子行为。利用Tauc表达,通过紫外可见吸收分析确定了掺杂复合材料的带隙(Eg)。估计的直接带隙能(Eg)分别为1.93 eV (HCl掺杂PMMA/PANI复合材料)、1.19 eV (H2SO4掺杂PMMA/PANI复合材料)和1.71 eV (H3PO4掺杂PMMA/PANI复合材料)。直流电导率是在有和没有磁场的情况下测量的。还测量了与温度相关的直流电导率。此外,我们还讨论了氨(NH3)气体对聚苯胺基传感器材料的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信